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This manual contains documentation for software written for the Pathfinder for Autonomous Navigation (PAN) project,
a part of Space System Design Studio.
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CHAPTER

ONE

FLIGHT SOFTWARE AND SYSTEMS DOCUMENTATION

This section of the documentation contains documentation on both the flight software and the PAN satellite’s subsys-
tem architectures. The two ideas go hand-in-hand, which is why their documentation is woven together. This section
is primarily meant to be design documentation, although there is some user documentation as well.

1.1 Installing Flight Software

The code for flight software is available here. Follow the instructions in the README under ptest to set up the
code for development and testing.

FlightSoftware is dependent on a build system called PlatformIO. See Flight Software Build System to see how this
system is set up for our use.

1.2 Structure of Flight Software Repository and Documentation

This repository is very monolithic and actually contains three separate products:

• FlightSoftware, which runs on the Flight Controller of our spacecraft

• ADCSSoftware, which runs on the Attitude Control subsystem of our spacecraft

• PTest, a hardware-out-of-the-loop (HOOTL) and hardware-in-the-loop (HITL) testing platform designed to pro-
vide mission-fidelity testing.

Unless otherwise specified, this documentation talks about the design of Flight Software, not the other platforms.
Documentation for ADCSSoftware may be forthcoming, but for now it suffices to know that it exists to service the
hardware described in Attitude Determination and Control. However, because PTest is an extensive platform that is
still being heavily developed, we are producing good documentation for it here (see the table of contents below.)

1.2.1 Flight Software Components

Control Tasks

Type name: Serializer<bool>

The core unit of work in PAN flight software is the control task. The control task interface specifies one function,
execute, that can have any return type but accepts no arguments.

How does execute know what data to act upon? Upon construction, the control task is responsible for either
creating or finding state fields. Created state fields correspond to the outputs of the control task, and found state fields
correspond to the inputs.

3
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For example, the ClockManager control task creates a state field housing the current time, and updates this value
on every execution of the control cycle. A control task “finds” a state field by querying the State Field Registry; see
more about state fields and the state field registry below.

State Fields

A state field is nothing more than a wrapper around a simple type, along with a get and set function. All data
representing important values on the spacecraft are stored in state fields, which are centrally indexed by the state field
registry (see below). The indexing is by string; all state fields have a unique name, accessible by the function name.

There are three kinds of state fields on the spacecraft:

• Readable state fields are fields whose values can be read from the ground but whose values cannot be modified
from the ground.

• Writable state fields are fields whose values can both be read from and modified from the ground.

• Internal state fields are implementation details. This kind of state field exists so that control tasks can share
data across each other without breaking the encapsulated design of a control task. We care about encapsulation
because it enables unit testability.

Internal state fields can have any underlying data type, but since readable and writable state fields need to be passable
over the limited-bandwidth radio that we have onboard the spacecraft, their types are restricted to the following list:

• bool, unsigned int, unsigned char, signed int, signed char, float, double

• gps_time_t: A GPS time class, which has the sub-members wn (week number), tow (time of week in
milliseconds, and ns, which is an offset of +/- 1000000 nanoseconds off of the time of week.

• f_vector_t, d_vector_t: Vectors, which are nothing more than a renaming of std::array<float,
3> or std::array<double, 3>.

• lin::Vector3f, lin::Vector3d: These are custom-built vector classes that facilitate easy computation,
much of it at compile-time. See this for more information on these utilities.

• f_quat_t, d_quat_t: Quaternions, which are nothing more than a renaming of std::array<float,
4> or std::array<double, 4>.

• lin::Vector4f, lin::Vector4d: Custom-built quaternion classes, again provided by lin.

In order to encode and decode state fields from a string representation so that they can be transmitted over the radio,
readable and writable state fields contain a Serializer object. The control tasks that manage telemetry use the
functions contained within the serializer to manage the value of a readable/writable state field. Check out more info
about Serializers.

Faults

TODO: COMPLETE DOCUMENTATION

Faults serve are a way to modifiy the behavior of the satellite in a fundamental, off-nomial way. Faults are declared
and signaled / unsignaled in the ControlTask that is most closely tied to the data that can determine a fault condition.
For PAN, since we are choosing to only use Faults on hardware failure, this means Faults are declared in the device
monitor Control Tasks.

Upon construction, Faults must be tied to a name (so that it can be located in the SFR), a persistence, a number of
consecutive signals that are required after which the next signal will trip the fault. Faults must also be provided a
control_cycle_count, which to prevent multiple signals on the same cycle.

Faults can be signaled through the member function signal(), which increments a private internal counter
num_consecutive_signals. signal() should be called whenever the Fault condition is true. If the fault condition is

4 Chapter 1. Flight Software and Systems Documentation
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not met during a control cycle, the unsignal() function should be called to reset num_consecutive_signals
to 0.

Faults themselves encapsulate N different fields that are implemented as statefield

• A boolean statefield that represents whether or not it is faulted

• Persistence

The State Field Registry

The state field registry contains lists of pointers to events, faults, and readable, writable, and internal state fields, along
with functions to find and add events’, faults’, state fields’ pointers to the registry.

The purpose of the registry is to enable encapsulation. Upon construction, control tasks receive a reference to a State
Field Registry object that is shared across all control tasks. The control tasks can then publish their outputs to other
control tasks by adding state fields to the registry, and can find their inputs (which would’ve been published by other
control tasks) from the registry. This makes unit testing each control task extremely simple.

Flight Software Cycle

In order to maintain determinism and reduce complexity in the behavior of Flight Software, the main event loop of the
Flight Software, which we call the flight software cycle, is single-threaded and deterministically runs Control Tasks,
one after the other. The general structure of this loop is read-compute-actuate, as in most robot control loops. It is
implemented in MainControlLoop.cpp.

In order to maintain deterministic separation between consecutive executions of one control task, there’s an “offset”
field, which describes the time at which the control task is expected to start, relative to the start of the control cycle.

This offset is enforced using a busy-wait before each control task that waits for the current time to be greater than the
offset. If, for some reason, a control task’s execution runs into the offset of the next control task, the next control task
will begin immediately. This is never expected to occur, though, since we test the control cycle timing thoroughly.

Software Cycle in Flight Code vs HOOTL/HITL Code

This is the flight version of the software cycle. In the HOOTL/HITL (hardware-out-of-the-loop/hardware-in-the-loop)
versions of the cycle, there is an additional DebugTask that runs after the ClockManager. Its purpose is to exchange
state field data with the simulation. The DebugTask is required to last at most 50 milliseconds.

Debug Console

The DebugTask makes use of a utility that we call the debug console. The debug console manages input/output
via the USB serial port located on the Teensy. It has two functions: transacting state field values with a simulation
computer, and to serve as a general-purpose logging utility for software. Log messages can be written using an exposed
function called printf, which behaves in the same way as standard printf except for one parameter called the
severity of the message. The following are the available severity levels (adapted from here):

• debug: Information useful to developers for debugging the application.

• info: Normal operational messages that require no action.

• notice: Events that are unusual, but not error conditions.

• warning: May indicate that an error will occur if action is not taken.

• error: Error conditions

1.2. Structure of Flight Software Repository and Documentation 5
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• critical: Critical error conditions

• alert: Should be corrected immediately

• emergency: System is unusable.

1.2.2 Desktop Operation of Flight Software

See PTest Software Stack before reading this document.

One of the great things about PAN’s flight software is that it can run both on a tiny ARM-based microcontroller (the
Teensy 3.5/3.6) and on any Linux or Mac platform. We call the latter version of flight software the native binary,
because our build system, PlatformIO, calls desktop platforms the “native” platform.

Here we describe some of the pros and cons of using desktop vs. flight software and the implementation differences
between the two versions of flight software.

Pros and Cons

Pros:

• Being able to run the spacecraft entirely on your computer enables faster development iteration time.

• Simulation software cannot tell a difference between a connected Teensy and a desktop executable version of the
flight software, so this enables a greater guarantee that if the flight software is running correctly on the desktop,
then it will also run fine on a Teensy.

Cons:

• Native execution of Flight Software can only happen on Linux or Mac because PTY connections, which are
needed in order to connect to the Flight Software binary, are not supported on Windows. This is not a huge
development hurdle, given that most of the PAN Flight Software team works on one of these two systems.

• Flight Software runs 2 threads at 100% CPU utilization (see why below), so a minimum of 5 dedicated processor
hyperthreads are required for running a full mission simulation:

– One for the Python-MATLAB simulation interface

– Two for each flight software binary. If running a leader and follower spacecraft, this amounts to 4 total
threads for flight software.

Additional processing power is still required for the following tasks, which individually consume low CPU
bandwidth but require power on the order of ~1 hyperthread:

– Background MATLAB execution

– The downlink consumer helper process

– The uplink producer helper process

– The user-facing state command prompt

– Datastores and loggers for simulation data

These requirements can be reduced by running the simulation in single-satellite mode, disabling the MATLAB simu-
lation, or switching out one of the flight software simulations for a Teensy. However, the above is still doable on any
hyperthreaded quad-core system, like most recent 15” versions of the MacBook Pro.

6 Chapter 1. Flight Software and Systems Documentation
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Implementation Differences

Clock Management

Microcontrollers have the benefit of a built-in system clock that ticks once per clock cycle, and thus ticks at a de-
terministic, relatively reliable rate. Modern computers change their clock speeds all the time, so ensuring real-time
control for processes on these computers is either difficult or impossible.

On the Teensy, timing is provided via the Arduino functions micros, millis, and delay. We achieve the same
with std::chrono on desktop compilations of flight software! In order to ensure real-time constraints, rather than
using this_thread::sleep for pausing the event loop execution, we simply busy-wait until the desired time.
This allows for relatively good control cycle timing, at the expense of requiring the main event loop to run with 100%
CPU utilization. This is not much of an expense at all, unless the system on which the flight software is running
happens to be underpowered.

Communicating with Flight Software

One key difference in how the desktop and Teensy flight software versions differ is how they manage communication
with the simulation server in a testing configuration.

When the simulation computer communicates with Flight Software on a Teensy in a TITL/HITL/VITL configuration,
it does so over a USB connection. In the HOOTL configuration, the USB connection is replaced by stdin/stdout,
a PTY session to the running flight software process, and a Python-based serial connection to this PTY session.

This requires adding an additional thread to flight software that continuously manages stdin/stdout, to mimic
how the microcontroller has an independent, parallel-executing serial controller that dumps incoming and outgoing
data into buffers. This thread runs at 100% CPU utilization because it is constantly buffering the stdin/stdout in
order to meet real-time constraints.

Hardware Management

Any I/O communications with flight hardware have been turned into no-ops, so by default hardware always returns
dummy values as the result of any device interactions. The interactions are mocked just enough so that the flight
software does not go into a fault state because hardware is missing.

1.2.3 Serializers

Serializers are the workhorse unit of telemetry processing. Each state field that’s readable or writable from the ground
houses an instance of a serializer, which can be used to convert the value of the state field to/from a bitstream repre-
sentation.

You read that right: I said bitstream representation. Due to the limited 70-byte downlink packet size, PAN serializers
take compression to an extreme degree and squeeze every available bit out of the bandwidth. This is achieved by
realizing that fields on the spacecraft have a limited range of values, or have a limited range of resolution that we
care about on the ground. Using this realization, we can specify a fixed-point scheme for compressing state fields at
compile time.

As an example, suppose we have an unsigned integer x representing the state of a state machine that has 11 total states.
Since 11 is less than 16, note that we only need four bits to actually represent the value of the state field. So a serializer
for x would compress x down to 4 bits, rather than the 32 bits that it would usually take, or the 8 bits that it would take
if we naively reduced x down to an unsigned character. Using schemes like this all across our spacecraft, we’ve found
that compressing at the bit level reduces our telemetry size by up to 60%.

1.2. Structure of Flight Software Repository and Documentation 7
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Serializers allow conversion to/from a bitstream representation, but also allow conversions to/from an ASCII repre-
sentation of the internally containe data. This is useful for transacting data over a USB link when operating the flight
software in testing mode. In summary, the following methods are exposed by Serializer:

• serialize: Converts a given value into a bitstream, which is stored internally within the Serializer object.

• deserialize: Converts the internally stored bitstream into a value and writes it to an input pointer.

• deserialize: An overload of deserialize takes the ASCII-encoded value provided in an input character
buffer and converts the given value into a bitstream, which is then internally stored.

• get_bit_array: Gets a reference to the internal bitstream (this is useful for downlinking).

• set_bit_array: Sets the internal bitstream (useful for uplinks.)

• print: Converts the internally stored bitstream into an ASCII value that can be printed to a screen.

Constructing a serializer requires specifying the number of bits desired in the representation of its value, along with
“minimum” and “maximum” parameters specifying the bounds of the value. For certain serializers (this will be
explained in the upcoming sections), there are available default parameters that preclude the need for specifying some
of these three values.

Serializer is defined for the following basic types, which are explained in more detail in the hyperlinked sections:

• Boolean Serializer

• Integer Serializer

• GPS Time Serializer

• Quaternion Serializer

• Vector Serializer

Boolean Serializer

Type name: Serializer<bool>

Booleans are the simplest serializer to implement: a boolean’s value is either a 1 or a 0, so it can be represented by a
bitstream of size 1. The constructor for a boolean serializer accepts no arguments since none are required.

Integer Serializer

Type names: Serializer<unsigned int>, Serializer<signed int>, Serializer<unsigned
char>, Serializer<signed char>

I described integer serializers in some detail in the introductory section, but here I’ll go into greater detail.

There are a few kinds of constructors for integer serializers:

• There’s the “standard” constructor that requires three arguments, min, max, and bitsize.

• There’s a constructor accepting only min and max, which automatically computes the required bitsize needed
to represent the full range of the possible integer values (i.e. bitsize = ⌈log2(max− min)⌉).

• For unsigned int and unsigned char serializers, there’s a constructor accepting only max. Internally this just
calls the constructor we just mentioned, but sets min to 0.

• Also for unsigned int and unsigned char serializers, there’s a no-argument constructor that sets max to 2^32 - 1
for unsigned int serializers and to 2^8 - 1 for unsigned char serializers.

These serializers, in general, work as follows: the specified bitsize provides

8 Chapter 1. Flight Software and Systems Documentation
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GPS Time Serializer

Type name: Serializer<gps_time_t> TODO

Quaternion Serializer

Type name: Serializer<f_quat_t>, Serializer<d_quat_t> TODO

Vector Serializer

Type name: Serializer<f_vec_t>, Serializer<d_vec_t> TODO

1.2.4 Flight Software Build System

Flight Software’s build system is based on PlatformIO and provides the following set of environments:

• fsw_native_[leader|follower] : HOOTL environments. The leader/follower monikers exist because
the two environments compile slightly different constants for the hardware-defined leader/follower spacecrafts
(not to be confused with the software designation of leader/follower for each spacecraft.) In practice, we almost
always use fsw_native_leader for HOOTLs as a matter of convention, since the hardware constants do
not affect the HOOTL much.

• fsw_teensy3[5|6]_hitl_[leader|follower] : HITL environments for both Teensy 3.5 and Teensy
3.6.

• fsw_native_ci : Flightless environment that only exists so that symbol-based debugging of unit tests is
possible.

• fsw_flight_[leader|follower]: Flight code for leader and follower spacecraft.

• gsw_downlink_parser: Parses the incoming binary data packets from the spacecraft telemetry into intel-
ligible JSON for consumption by ground software systems.

• gsw_uplink_producer: Produces a binary-encoded packet of uplink data based on a user-specified JSON
list of state fields and values for those fields.

• gsw_telem_info_generator: This purely informational environment produces a utility for listing the
telemetry values and associated telemetry flows that exist on the spacecraft. This utility is useful for reviewing
telemetry periodically for correctness.

The following compiler macros are used liberally across flight software to conditionally compile certain parts of the
codebase in certain environments:

• DESKTOP macro, when used, indicates a certain piece of code should only be compiled for fsw_native*
environments or gsw* environments.

• FUNCTIONAL_TEST macro, when used, indicates a certain piece of code should only be compiled for
HOOTL/HITL, but not flight.

• FLIGHT macro, when used, indicates a certain piece of code should only be compiled for flight, but not
HOOTL/HITL.

• GSW macro, when used, indicates a certain piece of code should only be compiled for gsw* environments.

1.2. Structure of Flight Software Repository and Documentation 9
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1.2.5 Mission Management

PAN has a very simple goal: dock two satellites together in space. The execution of this goal, though, is made
complex by way of fault management and contractual requirements. The mission manager software on PAN handles
these complexities, by way of the MissionManager control task (see _Components). It contains the logic for the
PAN Mission State Machine, which controls the overall pointing and orbital maneuver strategy for the spacecraft, and
addresses faults, startup, and reboot conditions.

Nominal Mission Management

The PAN Mission Manager contains the following states:

• The “nominal” states, which would be generic states that might be found on any satellite.

– Power up: This is the first state that occurs upon initialization of the first control cycle. During this
mode, each subsystem checks the state of its hardware devices, persistent boot values are pulled from
EEPROM (see Persistent State), and the satellite waits for the end of the contractually-required 30-minute
deployment period. It then determines the next mode, which is either “initialization hold” or “detumble”.

– Initialization hold: If something is wrong with the spacecraft that would impede its ability to make
communications with the ground, this mode tries to get the satellite to stop tumbling and generally conserve
power to maximize the probability of communication. Upon successful communication, the ground is free
to command the satellite into any mode.

10 Chapter 1. Flight Software and Systems Documentation
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– Detumble: During this mode the satellite is reducing its angular rate so that the attitude of the spacecraft
is stabilized.

– Standby mode: No GNC commands are made, and the PAN satellite is put into a power-maximizing
orientation by default. A ground command can move the satellite into any state from this state, but the
nominal choices are either the “follower” or the “leader” state.

• The “PAN-specific” states, which are very specific to the PAN mission.

– Follower: During this state the satellite points itself to maximize comms + power, and executes propulsion
manuevers that match its orbit and phase with the leader and satellite. The leader’s position is continuously
provided via ground uplink to the follower.

– Leader: This state is the same as the follower state except that propulsion commands are disabled.

– Follower Close Approach: During this state the satellite does the same things as in the “follower” state
except it points towards the other satellite.

Once the two satellites are fairly close together, they both move into the “Docking” state. This determina-
tion is dependent on the follower and leader satellites achieving CDGPS lock (see GPS Receiver).

– Leader Close Approach: This state is the same as the leader close approach state except that propulsion
commands are disabled.

– Docking: The satellites drift towards each other passively (no propulsive or attitude guidance is applied),
with the magnetic docking ports on the ends of the satellites causing the satellites to dock.

– Docked: The satellites are joined together; this state is either autonomously entered by the pressing of the
docking switch following the “Docking” state, or is a state entered via a ground command (i.e. the ground
software notices that the satellites have been in the same position for a long time, and therefore must be
docked.)

We can think of the PAN-specific mission states as having two distinct phases: the “active mission” phase, consisting of
the follower and leader states, and the “post mission” phase, consisting of the docking and docked states. I’m making
this distinction because the behavior of states in these two phases differs if the satellite powers down unexpectedly due
to software faults or power faults. Namely, if the satellite powers down during the active mission phase, then the entire
mission is restarted from both satellites being in standby, but if power down happens during the post-mission phase,
then the satellite restarts from its most recent mission state. This is achieved via saving the satellite state to EEPROM.

To achieve the behaviors specified in each of these states, the mission manager sets states of the spacecraft subsystems
(propulsion, radio, ADCS, and docking system) to achieve its desired behavior.

1.2.6 Fault Management

Fault management is a general term for what is actually three distinct functions: fault detection, fault isolation, and
fault response. Together, these three behaviors are known in the spacecraft industry as FDIR (fault detection, isolation
and response.) Our spacecraft is not very complex–we don’t have multiple levels of subsystems–so we generally do
not need to isolate root-level faults from their top-level diagnosis. Instead, we only participate in fault detection and
response, which I’ll describe in greater detail below.

Fault Detection

We detect faults in two main ways: via state machines, and via the Fault class. State machine fault detection is used
for complex, tiered fault scenarios where a system is counted as “faulted” due to a history of different kinds of failures;
see Quake Fault Handler and Piksi Fault Handler below. But for the most part, we use the Fault class for simpler kinds
of failures such as wheel failures or critically low battery levels.

1.2. Structure of Flight Software Repository and Documentation 11
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The fault class is just a wrapper around a boolean state field that creates a set of “control” state fields around the
boolean value. The boolean value can be signaled or unsignaled by control tasks; if the value is signaled a certain
number of times, called the persistence threshold, the fault is said to be in a “faulted” state. Ground-controllable
parameters can suppress or force this “faulted” state, giving the ground full control over the effect of faults on flight
software behavior.

For a fault whose base-level flag is called “x”, it creates the following state fields: TODO describe fault class flags

The following failures are surrounded by a fault class:

• HAVT-reported failures of the ADCS wheel ADCs

• HAVT-reported failure of the ADCS wheel potentiometer

• Critically low battery level

• Prop overpressure

• Prop failed-to-pressurize

For certain kinds of faults, there is not a single fault-detection-and-response event, but several in succession, each
depending on the previous detection. The Quake and Piksi fault responses have this property, and so they implement
state machines for keeping track of their fault state. I’ll describe these now.

Quake Fault Handler

This handler exists to manage long durations of comms blackouts. The fault response can be described as follows:

• If there has been no comms with the Iridium satellite network for more than 24 hours, force an exit of the
mission and Instead go into standby mode in order to be in a comms-maximizing attitude.

Note that I said “comms with the Iridium satellite network” and not “comms with the ground.” The motivation
behind this fault handler is that lack of comms might be due to a pointing or a device failure; we should not
punish the mission trajectory if its attitude has been unlucky enough that it can establish comms but not send a
full downlink packet.

• If the satellite has been in standby due to the previously described fault response for more than 8 hours, trigger
a powercycle of the radio. Repeat this fault detection and response up to three times before moving to the next
fault response.

• If there continues to be a comms blackout, change the mission state to safehold. The goal with this fault
response is to disable ADCS and force the satellite into a random, slow tumble, during which we might hope to
get comms. This is useful since it’s possible that a faulty pointing strategy or an erroneous attitude estimation
causes a lack of comms in standby mode.

Piksi Fault Handler

This handler manages long durations during which we are unable to establish a real-time kinematic (RTK) GPS fixes.
The fault handler recommends moving the satellite to standby if any of the following three situations occur:

• If the Piksi has been unable to collect GPS data for a extended duration (i.e the Piksi is dead)

• If the satellite are in close approach, but the Piksi has been unable to get an RTK fix for a configurable wait
period.

• If the satellites are in a close approach state and the Piksi has been able to get RTK fixes while in close approach,
but then the Piksi stops getting RTK fixes for a configurable wait period.

Fault Response

The fault response to any fault consists in a change of mission state and a string of subsystem-specific actions. Either
of these values may be null; it may be that the response to a fault may recommend no change in mission state or no
subsystem-specific actions.
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The fault response is administered via a control task called MainFaultHandler contained within MissionManager. At a
high level, what it does is run a bunch of sub-tasks that each recommend a mission state to MainFaultHandler and run
subsystem-specific actions. The MainFaultHandler combines these recommended mission states into a single recom-
mendation to the MissionManager, in the following priority: - If safehold is recommended by any sub-fault handler,
the MainFaultHandler recommends safehold - Otherwise, if standby is recommended by any sub-fault handler, the
MainFaultHandler recommends standby - Otherwise, the MainFaultHandler makes no recommendation.

All fault response control tasks derive from a class called FaultHandlerMachine, whose inheritance diagram is shown
below:

Fig. 1: Diagram depicting the fault handler machine classes.

The core of all of these tasks is that they return a fault_response_t, which has value either none, standby, or safehold,
corresponding to each possible recommended mission state by a fault handler. QuakeFaultMachine and PiksiFault-
Machine implement this interface along with an internal state machine to keep track of their fault state, as described
above. MainFaultHandler implements this interface as well.

For responding to simple fault detections, such as those captured by the Fault class, we’ve created the SimpleFault-
Handler interface. It accepts a pointer to a Fault object, a set of mission states during which the fault handler responds
to the fault (which we call active states), and the fault handler’s recommendation upon detecting a fault.

The SimpleFaultHandler is an interface because it leaves its execute() function undefined, choosing instead to im-
plement a function called determine_recommended_state(). This function produces the fault handler’s recommended
mission state as a function of the current mission state, the fault handler’s “active states”, and the state of the fault
object. Subclasses of SimpleFaultHandler implement subsystem-specific actions in response to the fault. SuperSim-
pleFaultHandler, for example, implements no subsystem-specific response. PropOverpressuredFaultHandler, on the
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other hand, is a specialization that causes the propulsion tank to vent its propellant in order to relieve the pressure.

As depicted, the MainFaultHandler contains a few SuperSimpleFaultHandler‘s (for ADCS, power, and propulsion
failure-to-pressurize faults), a ‘PropOverpressuredFaultHandler, a QuakeFaultHandler, and a PiksiFaultHandler. It
runs all of its sub-tasks in order to administer the satellite’s fault response.

For the purpose of unit testing, we also have a FaultHandlerMachineMock that a tester can use to manually inject any
kind of recommended mission state. It executes no subsystem-specific actions.

1.2.7 Flight Software Subsystems

Persistent State

In any computer system, it is important to keep track of persistent state that should survive expected or unexpected
reboots of the system. For our system, the EEPROM is the only reliable means of state-saving, and we have an
EEPROMController control task that manages the saving of certain state fields to the EEPROM.

Fields written to the EEPROM can either be signed/unsigned ints/chars, or booleans. This makes it easy to serialize
or deserialize their values in and out of EEPROM. The list of EEPROM-saved fields can be found by running the
Telemetry Info Generator (TIG); the “eeprom_saved_fields” key inside the produced JSON file by the telemetry info
generator lists the set of state fields and their saving period, i.e. the number of cycles between queries of their value
to save to the EEPROM.

The EEPROM is emulated in HOOTL via a JSON file that is stored on-disk.

Special Considerations

One of the fields saved to the EEPROM, pan.state, is special since it is a record of the current mission state.

Since it is only safe for the spacecraft to be in the standby, leader, follower, or close approach states if it has already
gone through the startup and detumble states, the EEPROM controller ignores the saved value of pan.state if it is
not startup, docked or docking. The reason docked and docking are allowed is because in those states the spacecraft is
stable by virtue of its connection (or near-connection with the other spacecraft), and it would in fact be unsafe for the
spacecraft to try to detumble.

Power Management

Our satellite runs on the Gomspace NanoPower P31U battery + management unit. It’s an space-rated system built for
CubeSats and has an I2C interface that provides nearly complete control over all aspects of the Gomspace’s function.
We employ two primary functions: checking the state-of-charge of our batteries and solar power systems, and power-
cycling the Gomspace’s programmable outputs when desired.

Configuring Battery Settings

The Gomspace allows us to configure settings of the battery by sending a config packet. The config packet can hold
settings for the following:

• The power point tracking mode

• Mode for battheater (0 = Manual, 1 = Auto)

• Battery heater low threshold. The battery will turn the heater on if the temperature goes below this value.

• Battery heater high threshold. The battery will turn the heater off if the temperature goes above this value.
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• Nominal mode output value

• Safe mode output value

• Power point tracking mode for the boost converters

Reading State

The Gomspace provides a housekeeping packet of data that is requested by the satellite on every control cycle. This
housekeeping packet contains the following important elements:

• The battery voltage

• The total system current output

• The total current into the system via the solar panels

• The boost converter voltages. These are the voltages set across the solar panels by the MPPT (maximum power
point tracking) system, which adjusts the voltages such that the total power generated by the solar panels (which
is voltage x current) is maximized.

• Output values (on or off), one for each of the six programmable outputs on the Gomspace.

• Time until power on/off

• Time remaining on the I2C, GND, and CSP watchdog timers. If this time gets close to zero, the Gomspace
automatically resets power on the entire spacecraft in order to try to re-establish Flight Software and Gomspace
communication. The intent of this feature is to shake flight software out of any infinite loops or fault conditions
that might be causing it to stall.

• Number of I2C, GND, and CSP reboots

• Number of reboots of the Gomspace system (and by extension, the entire satellite)

• Cause of the last EPS reset

• Mode of the battery (0 = initial, 1 = undervoltage, 2 = safemode, 3= nominal, 4=full)

• The power-point tracking (PPT) mode (1=maximum power point tracking, 2=fixed). During flight, the PPT
mode should be set to 1. While charging the battery, the mode should be set to 2.

• Temperature of boost converters and onboard battery

• The status of the battery heater (on or off)

Commanding

The gomspace controller allows us to set the photovoltaic (PV) input voltages, the outputs, the heater, and the power
point mode from the ground. We can also reboot the satellite and reset the WDT counters from the ground using
statefield commands. The gomspace will only set PV voltages when the Power Point Tracking mode is in Fixed.

Power Cycling

We can power cycle (i.e turn off and then on again) each of the six output channels of the Gomspace battery from the
ground by setting statefield commands (e.g gomspace.power_cycle_output1_cmd) to true. Power cycling
takes approximately 30 seconds to complete. It can be useful as a fault response. For example, the Quake Fault Handler
powercycles the output channel connected to the radio up to three times during communication blackout periods.

1.2. Structure of Flight Software Repository and Documentation 15



PAN Software Systems Manual

DC-DC Converter

A 7-24V DC-DC converter is connected to the Gompace battery and powers the ADCS system, the propulsion system,
and the docking system. The ADCS system is connected to the ADCSMotorDCDC_EN pin. The propulsion and
docking systems are connected to the SpikeDockDCDC_EN pin. These pins can be enabled, disabled, and reset from
the ground using statefield commands. The DC-DC pins should not be disabled except in exceptional circumstances,
such a failure in I2C communication.

Attitude Determination and Control

The attitude determination and control subsystem (ADCS) box of the satellite is a 0.5U unit attached at the end of
our spacecraft opposite its docking face. It has its own microcontroller, a Teensy 3.6, that runs a specialized software
and is connected to the Flight Controller Teensy over I2C. The ADCS box provides fairly robust but slow pointing
control–the slowness is sufficient for PAN’s purposes.

Attitude Determination System

The attitude on the spacecraft is determined using a combination of three sensors: the sun sensors, the gyroscope, and
the two magnetometers.

Sun Sensors

The sun sensors are 5 arrays of 4 sensors, with each array attached to one of the faces of the ADCS box, and each sensor
in the array angled off the surface of the box in a different way. The sun sensors are nothing more than phototransistors
attached to an analog-to-digital converter. The five analog-to-digital converters (one for each array) are connected via
I2C to the Teensy.

The current through each phototransistor can be read as a voltage on the Teensy. The currents on all twenty sensors
are fed through a precomputed linear regression to determine the vector to the sun relative to the spacecraft in its body
frame. If such a regression returns inconclusive results then the ADCS Teensy lets the Flight Controller know (see
Interface with Flight Software below).

Gyroscope and Heater

The gyroscope is connected over I2C to the ADCS Teensy. To ensure the gyroscope measurement does not drift due
to thermal fluctuations, the gyroscope is embedded underneath a resistive heating device that operates via a bang-bang
controller. The setpoint of the controller is managed by the Flight Controller.

Magnetometers

There are two magnetometers on the spacecraft.

MAG1: Todo: details about MAG1

MAG2: Todo: details about MAG2

Each magnetometer can be individually commanded between IMU_MAG_NORMAL and IMU_MAG_CALIBRATION
modes. Data is polled from both magnetometers simultaneously.
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Attitude Control System

We achieve attitude control via 3 reaction wheels and 3 magnetorquers, one for each axis of the spacecraft. The wheels
are controlled via “ramp command”, which sets their angular acceleration and thus provides torque-based control over
the spacecraft’s attitude. The magnetorquers are provided a magnetic moment command, via which they can execute
a torque on the spacecraft.

The ADCS Software

TODO explain ADCS Software functionality.

Interface with Flight Software

The interface of the ADCS box Teensy with the flight Teensy is over register-based I2C, effectively SMBUS. In this
relationship the ADCS Teensy is a slave and the flight Teensy is a master.

Reading from ADCS Controller

The flight controller can read values off of the ADCS Teensy via a “point-and-read” interface. The flight controller
first sets the value of a read pointer, which specifies the register address at which it wants to receive values. The
ADCS Teensy then responds with a set of values that begin at the register specified by the flight controller and run
contiguously up to some other register address. This allows the flight controller to read values off of the ADCS
controller in bulk, which reduces protocol overhead when accessing related values.

Below we list the “read registers” on the ADCS and where a read operation ends when the read pointer is set to that
register address. As an example for explaining the previous paragraph, note that setting the read pointer to the X-value
of the magnetometer causes the ADCS Teensy to report back the X, Y, and Z values of the magnetometer. This is
sensible since any control scheme would want all three values off of the ADCS device.

TODO insert table from Kyle’s document

Writing to ADCS Controller In order to actuate attitude commands, the ADCS box provides registers that can be
written to. This list of registers is specified below.

TODO insert table from Kyle’s document

ADCS Hardware Availability Table (HAVT)

For every Device connected to the ADCS Teensy, the Teensy tracks the “functionality” state of the Device. If it is
disabled, then if the device is an actuator, no actuations will be performed. If the Device is an I2CDevice, then no
I2C transactions will occur with that device.

Internally within ADCS Software, there is a Hardware Availablility Table that reports the funct ionality state of each
device. I2C devices automatically disable (set their functionality state to false) themselves if too many consecutive
I2C transactions fail. All devices are initially enabled ADCS Teensy boot, so if all setup() calls are succesful, the
initial HAVT table will be represented by a bitset of all 1’s.

The ADCS Teensy has a read register dedicated to reading the state of the HAVT table. There are two seperate
command registers to intewith the HAVT table, one for commanding reset()’s, and another for commanding
disable()’s. All three are represented as a 32 bit long bitsets.

On every ADCS cycle, the ADCS Teensy will actuate a reset() or disable() if the index of the command table
corresponding to a device has a 1 in that position. Therefore, nominally the reset and disable command registers are
all commanded as 0’s from the FSW Teensy.
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Flight Software Components for ADCS

Several control tasks manage the ADCS system. They are: the ADCS box monitor, the ADCS attitude estimator, the
ADCS computer, the ADCS commander, and the ADCS box controller.

• The ADCS Box Monitor and Controller are basic device-interface control tasks that do the simple job of reading
sensor values and writing wheel and magnetometer commands to the ADCS peripheral.

– ADCS Box Monitor-specific behaviors:

* If a sensor reading is out of bounds, ADCSBoxMonitor will set a corresponding flag as true. Other-
wise, it is set to false.

* After reading the ADCS HAVT table, ADCSBoxMonitor will signal() a corresponding fault
if any of the wheels, or the wheel potentiometer report as not functional. Otherwise, the flag is
unsignal()’ed.

– ADCS Box Controller-specific behaviors:

* Renews the calculation of the sun vector if ADCSMonitor reported that a previous calculation was
no longer in progress.

* Applies the desired HAVT reset or HAVT disable vectors to the ADCS box.

• The ADCS attitude estimator takes inputs from the box monitor to produce a filtered estimate of the spacecraft’s
attitude.

TODO: What happens when inputs are NaN?

• The ADCS computer, using the high-level ADCS strategy dictated by the mission manager, creates a desired
attitude for the spacecraft.

The desired attitude is provided via four vectors: a “primary” pointing objective; the body vector that should be
aligned with the primary pointing objective; and the “second” pointing objective and body vector.

• The ADCS commander implements a control law to convert the desired attitude and rate into wheel and magne-
torquer commands for the spacecraft.

– If the adcs_state is in startup, this control task sets the ADCS box to passive mode which disables
all actuation (magnetorquers and wheels) regardless of the MTR and Wheel commands coming from
ADCSCommander. In all other adcs_states ADCSController will dump all the desired commands
from ADCSCommander into the ADCS box using the ADCS Driver.

TODO insert state field names

Propulsion System Management

The purpose of this document is to detail the Propulsion Controller Subsystem of Flight Software. The Propulsion
System is responsible for generating thrust in order to accelerate the satellite. It is also responsible for monitoring the
state of the propulsion system hardware and handling detected faults.

The software components of the Propulsion System consists of the Propulsion System driver, the Propulsion System
Controller, and the Propulsion System Fault Handler.

The hardware components of the Propulsion System consists of the inner tank, the outer tank, the inner tank temper-
ature sensor, the outer tank temperature sensor, the outer tank pressure sensor, the two intertank valves, and the four
outer tank valves.

This document is split into four main sections. The first section gives a high-level overview of the Propulsion Sys-
tem, its components, and the responsiblities of each component. The second section details the Propulsion System
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state machine. The third section details the Propulsion System driver. The last section consists of operational notes,
warnings, and known issues.

Overview

This section gives and overview of the components of the Propulsion System, their responsibilities, and defines termi-
nology used in the rest of this document.

Tank1

Tank1, the inner tank, is responsible for pressurizing Tank2. At the start of the mission, Tank1 is filled with liquid
propellant. The propellant is released into Tank2 through one of the two intertank valves, which causes pressure to
build up in Tank2. The two valves on Tank1 are referred to as the primary valve and the backup valve.
Tank1 also has a temperature sensor, which is used to detect and handle faults.

Tank2

Tank2, the outer tank, is responsible for accelerating the satellite. It consists of four valves arranged tetrahedrally:
valve1, valve2, valve3, valve4. Each valve is assigned a schedule, and the four valve schedules along with a
firing time consist of a firing schedule. The direction of acceleration is, therefore, determined by the firing schedule.
Tank2 has a temperature sensor and a pressure sensor. The pressure sensor on Tank2 is used to indicate when
Tank1 should stop pressurizing Tank2. Both the pressure sensor and temperature sensor are used to detect and
handle faults.

Firing Schedule

The firing time is determined by cycles_until_firing, which is the number of control cycles from the current
control cycle at which the valves shall fire. It is defined relative to the current control cycle. For example, if the
current control cycle is 13, then cycles_until_firing of 8 means that the valves shall fire when the satellite is
in control cycle 21.

The valve schedules are in units of milliseconds with a maximum value of 1000. When the satellite enters the
control cycle specified by the firing time, the valves will open for the duration of their assigned schedules.

The Propulsion System Controller will only execute what it considers a valid firing schedule. Any schedule
considered invalid will be ignored.

If any valve is assigned a schedule greater than 1000, then that entire firing schedule is invalid. If the Propulsion
System Controller believes that it will not have enough time to pressurize Tank2 by the desired firing time cycle, then
this schedule will also be considered invalid. A valid firing schedule is, therefore, a firing schedule in which all valve
schedules are no greater than 1000 ms and the firing time is far enough into the future that the Propulsion System has
time to pressurize.

Propulsion Controller State Machine

This section details the Propulsion Controller (PropController), which is implemented as a state machine. The
state machine interacts with the propulsion system via the propulsion system driver.

The Propulsion Controller is defined in PropController.hpp and implemented in PropController.cpp.

The firing time is determined by prop.cycles_until_firing. It is time to fire, when prop.
cycles_until_firing is 0.
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There are techncially two copies of the firing schedule: the state machine schedule and the driver schedule. The state
machine schedule consists of the following statefields: prop.sched_valve1, prop.sched_valve2, prop.
sched_valve3, and prop.sched_valve4. The values in this state field are copied to the driver’s schedule one
cycle prior to the firing time.

Propulsion Controller States

This section details state transitions and entry conditions (preconditions) of the states in the Propulsion System state
machine.

Disabled

• In this state, propulsion system will defer decisions to the ground (or other subsystems) and will only read
the sensor values

• No transitions are possible from this state

• There are no entry conditions; any state may enter enter this state.

Idle

• In this state, the propulsion system is ready to process and execute firing schedules

• Transitions to handling fault if any hardware fault is faulted (has persistently been signaled)

• Transitions to await pressurizing or pressurizing upon reading a valid schedule

• To enter this state, DCDC::SpikeDockDCDC_EN pin must be HIGH

Await Pressurizing

• In this state, the state machine has accepted the current schedule but has decided to wait until it is closer
to the firing time before starting to pressurize

• Transitions to handling fault if any hardware fault is faulted (has persistently been signaled)

• Transitions to pressurizing if it meets the entry conditions for pressurizing

• To enter this state, the current state must be idle, the schedule must be valid, and there must be more than
enough time to pressurize

Pressurizing

• In this state, propulsion system is currently pressurizing

• Transitions to handling fault if any hardware fault is faulted (has persistently been signaled)

• If Tank2 pressure reaches prop.threshold_firing_pressure, then transition to await firing

• If Tank2 pressure fails to reach the prop.threshold_firing_pressure within prop.
max_pressurizing_cycles and the prop.pressurize_fail has not been suppressed, then
transition to handling fault.

• If Tank2 pressure fails to reach the prop.threshold_firing_pressure within prop.
max_pressurizing_cycles and the prop.pressurize_fail has not been suppressed, then
transition to await firing.

• If the schedule is no longer valid, transition to disabled

• To enter this state, the current state must be either await pressurizing or idle and there must be exactly
min_cycles_needed()-1 cycles until it is time to fire

Await Firing
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• In this state, propulsion system has reached threshold pressure and will remain in this state until it is time
to fire

• Transitions to handling fault if any hardware fault is faulted (has persistently been signaled)

• Transitions to firing when prop.cycles_until_firing is 0. On this cycle, the values of the firing
schedule in the statefields will be copied to the schedule in the propulsion system driver.

• To enter this state, the current state must be pressurizing and the schedule must be valid

Firing

• Transitions to handling fault if any hardware fault is faulted (has persistently been signaled)

• On each cycle, copies the values of the driver firing schedule into the state machine firing schedule

• Transitions to idle when all values of the firing schedule is 0

• To enter this state, the current state must be await firing and prop.cycles_until_firing must be
0

Handling Fault

• To enter this state, at least one of prop.pressurize_fail, prop.overpressured, prop.
tank2_temp_high, prop.tank1_temp_high is faulted

• Transitions to venting if the entry conditions of venting are meets

• Transitions to idle if no fault is faulted

Venting

• In this state, faults relating to overpressure or high temperatues have been detected for several consecutive
control cycles

• To enter this state, at least one of prop.overpressured, prop.tank2_temp_high, prop.
tank1_temp_high is faulted

• Transitions to disabled if after executing prop.max_venting_cycles number of venting cycles, the
fault in question is still faulted

• If faults are faulted for both Tank1 and Tank2 at the same time, then the PropFaultHandler will
coordinate the venting protocol to make the tanks take turn venting.

• If venting Tank1 or Tank2 due to high temperatures, transition to idle if the temperature falls below
max_safe_temp (48 C)

• If venting Tank2 due to high pressure, transition to idle if pressure falls below max_safe_pressure
(75 psi)

• See the PropFaultHandler section below for details on the venting protocol

Pressurizing Protocol

The pressurizing protocol consists of executing a sequence of pressurizing cycles up to a maximum of prop.
max_pressurizing_cycles pressurizing cycles. A pressurizing cycle consists of filling period and a cooling
period. The filling period is given by prop.ctrl_cycles_per_filling and the cooling period is given by
prop.ctrl_cycles_per_cooling.

Therefore, in a single pressurizing cycle, a valve on Tank1, given by prop.tank1.valve_choice is
opened for prop.ctrl_cycles_per_filling number of control cycles and then closed for prop.
ctrl_cycles_per_cooling number of control cycles. At each control cycle, Tank2 pressure, given by prop.
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tank2.pressure, is compared with prop.threshold_firing_pressure. If Tank2 pressure reaches the
threshold firing pressure, then the state machine transitions to firing.

If after prop.max_pressurizing_cycles, the pressure of Tank2 has not reached the threshold firing pressure,
then the prop.pressurize_fail fault is signaled. This fault has a persistence of 0, so if it has not been previously
suppressed by the ground, the state machine will transition to handling fault.

If it has been suppressed by the ground, the state machine will transition to await firing.

Interface

The only method that is particularly useful to other subsystems is min_cycles_needed(). The rest are docu-
mented here solely because they are public.

min_cycles_needed() Returns the minimum number of control cycles needed for a schedule to be accepted. If
a schedule is accepted, the state machine transitions from idle to await firing.

is_at_threshold_pressure() Returns true if Tank2 pressure has reached the threshold firing pressure

is_tank2_overpressured() Returns true if Tank2 pressure has exceeded max_safe_pressure

is_tank1_temp_high() Returns true if Tank1 temperature has exceeded max_safe_temp

is_tank2_temp_high() Returns true if Tank2 temperature has exceeded max_safe_temp

check_current_state(prop_state_t expected) Returns true if the current state is the expected state

can_enter_state(prop_state_t desired_state) Returns true if the state machine can enter the de-
sired state from its current state

write_tank2_schedule() Copies the state machine firing schedule from the statefields to the propulsion sys-
tem driver schedule

State Fields

prop.state The current state of the state machine (values defined in prop_state_t.enum)

prop.cycles_until_firing Determines the firing time relative to the current control cycle count

prop.sched_valve1 The schedule for Tank2 valve 1 in milliseconds

prop.sched_valve2 The schedule for Tank2 valve 2 in milliseconds

prop.sched_valve3 The schedule for Tank2 valve 3 in milliseconds

prop.sched_valve4 The schedule for Tank2 valve 4 in milliseconds

prop.max_venting_cycles The maximum number of venting cycles to attempt before disabling the propulsion system

prop.ctrl_cycles_per_closing The number of control cycles to wait between opening valves during a venting cycle
(default 1 second worth of control cycles)

prop.max_pressurizing_cycles The maximum number of pressurizing cycles to attempt before transitioning to han-
dling fault

prop.threshold_firing_pressure The minimum pressure needed in Tank2 to execute a firing schedule

prop.ctrl_cycles_per_filling The number of control cycles to open the Tank1 valve during a pressurizing cycle
(default 1 second worth of control cycles)

prop.ctrl_cycles_per_cooling The number of control cycles to wait between opening a Tank1 valve during a pres-
surizing cycle (default 10 seconds worth of control cycles)
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prop.tank1.valve_choice Specifies the Tank1 valve that will be opened during pressurizing or venting cycles (de-
fault is 0 for the primary valve)

prop.tank2.pressure The current pressure of Tank2 given by its pressure sensor

prop.tank2.temp The current pressure of Tank2 given by its temperature sensor

prop.tank1.temp The current pressure of Tank1 given by its temperature sensor

prop.pressurize_fail Fault field indicating that the state machine has executed prop.
max_pressurizing_cycles and has still failed to reach prop.threshold_firing_pressure

prop.overpressured Fault field indicating that the pressure in Tank2 exceeds max_safe_pressure (75 psi)

prop.tank1_temp_high Fault field indicating that the temperature in Tank1 exceeds max_safe_temp (48 C)

prop.tank2_temp_high Fault field indicating that the temperature in Tank2 exceeds max_safe_temp (48 C)

Propulsion System Fault Handler

The Propulsion System Fault Handler is defined in PropFaultHandler.h and implemented in
PropFaultHandler.cpp. It is only active when the prop_state is in venting or in handling fault.

Four possible faults have been defined by the Propulsion Subsystem: prop.pressurize_fail,
prop.overpressured, prop.tank2_temp_high, prop.tank1_temp_high. Handling prop.
pressurize_fail is deferred to the ground. The state machine will attempt to resolve the other three faults
in the venting state.

Venting Protocols

The protocol for venting one tank is similar to the the protocol for pressurizing. The maximum number of venting
cycles is given by prop.max_venting_cycles. The number of control cycles to open a valve is given by prop.
ctrl_cycles_per_filling.

Venting Tank1 is almost the same as pressurizing except that the period between opening the valve has been shorten
to prop.ctrl_cycles_per_closing instead of prop.ctrl_cycles_per_cooling.

Venting Tank2 is the same as venting Tank1 except the state machine will open a different valve from Tank2
after each venting cycle. Whereas Tank1 always vents through prop.tank1.valve_choice, Tank2 will cycle
through its four valves.

The state machine leaves the venting state when the fault(s) associated with the tank that it is currently venting are no
longer faulted.

When faults are active from both tanks indicating that the state machine should vent both tanks, the
PropFaultHandler is responsible for making the tanks take turns venting. PropFaultHandler will save
the current value of prop.max_venting_cycles and then set prop.max_venting_cycles to 1. This will
cause the venting cycle to end after 1 cycle and transition unconditionally to handling fault. PropFaultHandler
will then be responsible for counting the number of venting cycles executed. It will consider a single venting cycle to
consist of venting both Tank1 and Tank2 for one venting cycle each.

Should one of the faults become unsignaled during this protocol, PropFaultHandler will restore the old value of
prop.max_venting_cycles and the continue to vent if necessary.

Propulsion System Driver

This section details the purpose of the propulsion system driver, its components, and its public interface.
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The driver is responsible for opening and closing valves on both tanks and executing the firing schedule. The
protocols for validating the firing schedule and executing the pressurizing and venting operations are left to the
PropController.

The Propulsion System Driver is defined in PropulsionSystem.hpp and implemented in
PropulsionSystem.cpp. It consists of three singleton (static) objects: PropulsionSystem, Tank1,
and Tank2. The objects are globally accessible, but subsystems are advised to not directly interact with these objects.
The public interface is documented here for completion.

The two Tank1 valves are indexed (valve_idx) at 0 and 1. The four Tank2 valves are indexed at 0, 1, 2, and 3.

Interface

PropulsionSystem.is_functional() Returns true if the Propulsion System is operational (i.e. able to
execute firing schedules and read sensors).

Tank1.get_temp() Returns the temperature sensor reading for Tank1 in degrees Celcius.

Tank2.get_temp() Returns the temperature sensor reading for Tank2 in degrees Celcius.

Tank2.get_pressure() Returns the pressure sensor reading for Tank2 in psi.

Tank1.is_valve_open(valve_idx) Returns true if the Tank1 valve at valve_idx is opened

Tank2.is_valve_open(valve_idx) Returns true if the Tank2 valve at valve_idx is opened

PropulsionSystem.set_schedule(valve1, valve2, valve3, valve4) Sets the firing schedule
for the four Tank2 valves

PropulsionSystem.reset() Shuts off all the valves in both Tank1 and Tank2 and clears the firing schedule

PropulsionSystem.start_firing() Executes the firing schedule immediately

PropulsionSystem.disable() Ends the firing schedule regardless of whether the entirety of the firing sched-
ule has been executed

PropulsionSystem.open_valve(tank, valve_idx) Opens the valve at valve_idx for tank

PropulsionSystem.open_valve(tank, valve_idx) Closes the valve at valve_idx for tank

Implementation Notes

When start_firing() is called, an interrupt timer will cause an interrupt every 3ms. The interrupt handler
is responsible for opening the valves for the duration of the assigned schedules and closing the valves when they
are within 10ms of completing their schedules. The interrupt timer is disabled by calling PropulsionSystem.
disable().

While the interrupt timer is enabled, the schedule may not be modified in any way.

Calling PropulsionSystem.reset() implicitly calls PropulsionSystem.disable().

Operational Notes

*The preconditions for entering a state can be bypassed by manually setting prop_state to the desired state.*

This is because can_enter() is only evaluated when the state machine itself is attempting to transition states. Be
warned that it may be possible for the state machine to be indefinitely stuck in a state since it may only transition to a
new state if it meets that new state’s preconditions.
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*To make a firing occur immediately, set the firing schedule and transition to await_firing*

To force the state machine to immediately execute a schedule, set prop.cycles_until_firing to 0 and set
prop_state to await firing. This will cause the firing schedule to immediately be copied into the driver and
executed on the next control cycle. Note that each of the valve schedules must still be no greater than 1000 ms,
otherwise, the driver will ignore the entire firing schedule.

*Do not manually set prop_state to firing*.

Manually setting prop_state to firing is counterproductive and will not cause the schedule to be executed. This
is so because the call to PropulsionSystem.start_firing() occurs in the entrance protocol of the firing
state, which can only be executed when transitioning from await firing.

*Do not manually set prop_state to a state other than disabled while it is pressurizing or venting.*

Manually setting prop_state to disabled can be safely done from any state. It is, however, not advisable to
manually set prop_state to a state other than disabled while it is in the pressurizing or the venting state. The
reason for this is because valves are manually opened by the PropController. If the state machine is interrupted
while the valves are opened, the PropController will not get the opportunity to close these valves.

*The Propulsion System does not work if DCDC Spike and Hold pin is not enabled.*

The Propulsion System requires that DCDC::SpikeDockDCDC_EN pin be high. The state machine will still execute
if the pin is not high, but its behavior is undefined. The state machine will likely erroneously detect faults.

*The Propulsion System will close the valve when fewer than 10ms remain on its schedule.*

For example, if a Tank2 valve is scheduled to fire for 200 ms, then it is guaranteed to open for at least 190 ms but
no more than 200 ms. Once firing, schedules are checked every 3 ms. Therefore, all schedules under 10ms will be
considered valid by the state machine but will not be executed by the Propulsion System driver.

*A schedule can technically be cancelled at any time before the scheduled firing time.*

The state machine does not provide any convenient way to accomplish this. If a subsystem wishes to cancel a firing
schedule, then it may do so as long as prop.cycles_until_firing is not 0. The subsystem can set prop_state
to idle and invalidate the schedule by clearing prop.cycles_until_firing. Similarly, if the subsystem would
like to replace the schedule with a different schedule, then that subsystem should write the schedule to the appropriate
state fields and then manually set prop_state to idle.

*Setting prop_state to disabled will not clear the firing schedule.*

A subsystem can therefore pause or delay the schedule by setting prop_state to disabled. Since the firing time is
relative to the current control cycle, a firing schedule that is valid prior to disabling the state machine will still be valid
should the subsystem set prop_state to the state it was in prior to being disabled.

Known Issues

When testing the Propulsion System and running multiple tests within a single process, it does not matter that the
registry or the TestFixture is destroyed between tests. Since the objects are static, the results of previous tests
will always persist, so to avoid strange test results, the TestFixture should reset the fields of the static objects.

Guidance, Navigation, and Control

Attitude Determination

TODO
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Attitude Control

TODO

Orbit Estimator

Author: Nathan Zimmerberg (nhz2@cornell.edu) Started: 13 May 2020 Last Updated 14 May 2020

Main Goal

The goal of the orbit estimator is to estimate the position and velocity of self and the target satellites given sensor
inputs and messages sent from ground.

Input

GPS: Each satellite has a Piksi GPS receiver (see GPS Receiver).

Ground Messages: Ground software will uplink the target’s estimated orbit whenever possible.

Ground software can also modify the orbit estimator, including resetting, changing the propagation and sensor
models, and manually setting the orbit.

Propulsion: The last thruster firing.

Attitude Determination and Control: The estimated attitude, combined with the last thruster firing to get the change
in velocity in ECEF.

Output

Expected self and target Orbit, statistics, and debug information.

Software Components

The following components need to be finished and tested before getting combined into the main orbit estimator.

Check Orbit Validity: Done Check Orbits are in low earth orbit, this is useful for catching filter instabilities.

A valid orbit has finite and real position and velocity, is in low earth orbit, and has a reasonable time stamp
within MAXGPSTIME_NS, MINGPSTIME_NS.

Low earth orbit is a Orbit that stays between MINORBITRADIUS and MAXORBITRADIUS.

Short Orbit Propagation with Jacobian Output: Done The EKFs need to propagate the state and covariance in
between GPS readings using this.

Orbit GroundPropagator: Done Class to propagate orbits sent from ground.

The GroundPropagator tries to:

1. minimize the number of grav calls needed to get an up to date orbit estimate.

2. use the most recently input Orbit.

Implimentation details:
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Under normal conditions, this estimator just propagates the most recently uplinked Orbit. in current.

If a new Orbit get uplinked it will normally get put in catching_up, and the estimator will propagate
it to the current time in the background while still propagating current as the best estimate. Once
catching_up is done propagating it replaces current.

If another Orbit gets uplinked while catching_up is still being propagated in the background, it gets
stored in to_catch_up. This ensures too many Orbits getting uplinked won’t overload the estimator
and prevent it from making progress. If to_catch_up takes fewer grav calls to finish propagating than
catching_up it replaces catching_up. Also to_catch_up replaces catching_up if catching_up finishes
propagating.

Propagator details: High order integrators Yoshida coefficients from: https://doi.org/10.1016/
0375-9601(90)90092-3 The higher order propagator step right now works like this, first it con-
verts position and velocity in ecef to relative inertial coordinates to a close reference circular
orbit. Then it does a series of drift-kick-drift steps (see https://en.wikipedia.org/wiki/Leapfrog_
integration ) where a drift is rel_r= rel_r+rel_v*dt*0.5; and a kick is rel_v= rel_v + g_ecef0*dt;
For the low order step(2nd ish) there is just one drift-kick-drift, for the higher order step(6th ish)
Yoshida coefficients are used to do 7 drift-kick-drifts with a series of d*dt: Where somehow this
magical series of time steps cause some errors to cancel out. Finally when the step(s) are done
the relative position and velocity are converted back to ecef.

Single Orbit Extended Kalman Filter: WIP Use an extended Kalman filter to estimate the self orbit from GPS data.

This is currently implemented only in MATLAB, but the current implementation is too computationally expen-
sive and numerically unstable to be directly used in flight software. I am working on a square root Kalman filter,
and more carefully managing the computational load for the C++ version.

Double Orbit Extended Kalman Filter: WIP Use an extended Kalman filter to estimate the self and target orbit
from CDGPS and GPS data.

This is currently implemented only in MATLAB, but the current implementation is too computationally expen-
sive and numerically unstable to be directly used in flight software. I am working on a square root Kalman filter,
and more carefully managing the computational load for the C++ version.

Testing

Unit Tests: Unit tests are run in CI, and the teensy.

Unit tests check that the orbit propagation is accurate, and the Kalman filter math is right.

Estimator Performance Tests:

To test the orbit estimator performance I am using data from GRACE-FO and from PSIM.

The workflow is to generate a file of sensor data and truth on every control cycle from a full PSIM sim.
Then open that file in a Jupyter Notebook and plot the performance of the estimator under test.

For example see https://github.com/pathfinder-for-autonomous-navigation/psim/blob/
Jupyter-Notebook-Plotting-Utility/estimatortest/Orbit-estimator-test.ipynb

The C++ components can be easily wrapped in python using pybind11 and cppimport so tweaks to the
C++ code can be quickly tested.

This is much faster than running a full PSIM sim and doesn’t require access to MATLAB.

Also Jupyter Notebook can be run over SSH so if someone has an old laptop, can’t get the code to compile,
or doesn’t have MATLAB, they can still visually test the estimator on a Linux server.
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Orbital Control Algorithm

TODO

Telemetry Management

The flight software needs to be able to both send its data to the ground and have the capacity to accept commands
from the ground. These tasks are handled by the DownlinkProducer and UplinkConsumer control task, re-
spectively, which are described in more detail below.

Downlink Producer

The downlink producer has the responsibility of managing the selection of state fields that are downlinked to the
ground. This is important since the downlink bandwidth is extremely limited, down to a size of at most 70 bytes per
downlink packet, with low probability of communication in general.

Here are some definitions we lay down to begin with:

• A downlink snapshot represents a snapshot of all of the data we would ever want from the spacecraft at a
particular time.

• A downlink frame is a collection of 70-byte downlink packets which contain the data of a snapshot.

To downlink fields in a manageable way, the state fields are partitioned into groups called flows. The fields in a flow
are all transmitted together. This allows telemetry design to be thought in terms of “which flows do I want to send
down?”, as opposed to “which fields do I want to send down?”, which makes management much easier.

Each flow has the following priorities: a flow ID that’s unique to each flow, and a flow priority, ranging from -1 to the
total number of flows. A flow priority of -1 means that the flow is inactive and not downlinked to the ground; a flow
priority of 0 is the highest priority, and a flow priority of number of flows - 1 is a flow with the lowest priority.

Flows are specified in a CSV file under src/ in Flight Software. This CSV file is processed by a Python script to
produce a compilable C++ file with the same data.

Serializing Flows to a Stream

When downlinking, the downlink producer arranges the active flows by priority in-place, and then writes each flow to
the downlink frame in order. Writing a flow to the packet means writing the flow’s ID, and then writing each of the
serialized fields in the flow.

Since the set of flows might require more than 1 downlink packet, we mark each packet with a header bit (1 or 0) that
indicates if the packet is the first packet in the downlink frame. This header bit is inserted while the flows are being
written to the downlink frame; if a flow is going to cause the data to overflow into a new downlink packet, a header
bit is written first, and then the remainder of the flow is written. The effect of this scheme is that if the header bits are
removed from the downlink frame, the resulting data is a continuous stream of flows.

Uplink Consumer

In our system design, the ground is only allowed to send commands in the form of state field updates: behavior that
the ground wants to modify has to be attached to a state field that can control that behavior. For example, one common
ground task is to change the Mission Management state, which it can easily do by just setting the value of the mission
state.
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The structure of an uplink packet is thus a set of key-value pairs, with the key being the uplinked state field’s index in
the list of uplinkable state fields, and the value being the actual value of the state field. The index is compressed to
the minimum number of bits required to specify the maximum possible index, and the value of the uplinked state field
must be serialized using its serializer.

Uplink packets can be produced using the Uplink Producer utility, which is described in greater detail here.

The Radio Manager

The Quake Manager controls the satellite’s radio and is responsible for managing the link layer of PAN’s communica-
tions protocols (see Telemetry Management).

The Quake requires the teensy’s serial receiving buffer to have atleast 512 bytes of capacity.

Docking System

The docking system has three components: the docking magnets, the docking motor, and the docking switch. The
latter two components are controllable and readable by flight software.

Our docking at a range of 1 m happens passively via 4 strong neodymium magnets stored in the docking adapters of
the two satellites. During nominal mission operation, the strong fields created by these magnets would wreak havoc
with the onboard magnetometers, so they are nominally stowed in a quadrupole configuration so that they have very
little net magnetic field past the docking face. This is achieved by having two magnets point N-S, and another, adjacent
set of magnets point S-N.

The docking magnets are reconfigured from their quadrupole arrangement to a dipole arrangement via the docking
motor, which is a stepper motor that turns one of the magnet pairs in the right direction for achieving the correct
polarity.

During the docking operation, both satellites have a switch on their docking face that is depressed when the satellites
dock with one another. The switch is how we detect that the actual docking operation occurred.

Operation of the Docking Motor

The magnets are initially in the docking configuration, and thus the docking motor is only necessary for undocking
and redocking after the first successful docking of the two satellites has occured. There are four main statefields useful
in checking and changing the state of the docking motor. These are docksys.dock_config, which is false when the
magnets are in the undocked position and true when in docked position, docksys.is_turning, which is true if the motor
is being signalled to step and false otherwise, docksys.docked, which is true if the docking switch is depressed and false
otherwise, and docksys.config_cmd, the writeable state that tells the system what configuration the magnets should be
in (true for docked, false for undocked).

Two additional writeable statefields exist, docksys.step_angle and docksys.step_delay. The step angle of the motor is
constant based on its setup, but since the motor data sheet did not match observed values this step angle was calculated
from experimental trials and so we leave it adjustable. The step delay determines how fast the motor is turning. The
load from the magnets can vary based on position and changes to the setup from shaking during the mission, as can
power from the battery. Thus, the step delay can be changed if the system is not successfully changing configuration
as longer delays will yield more torque and control, although they are slower. The docksys.step_delay is useful in
troubleshooting issues if the system does not successfully turn with the initial values.

To operate the docking motor, the docksys.config_cmd should be sent from the ground and the motor should turn into
the desired position within a minute. If that does not work automatically, the docksys.step_delay value should be
increased and the process repeated.
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GPS Receiver

The PAN mission utilizes the Piksi, which is a Carrier Differential GPS (CDGPS). Two Piksi units detect the phase dif-
ference between their GPS signals, and use that phase difference to estimate a relative difference in position, called the
baseline vector. This position difference vector is accurate to 1cm which enables docking through cdGPS navigation
alone for PAN.

Time Propagation

TODO

Piksi Control Task

The Piksi Control Task or PiksiControlTask requires that the serial buffer that is connected to the flight computer have
a receiving buffer capacity of 1024 bytes. This is because within a 120 ms control cycle, there can potentially be two
piksi packets. Each packet nominally contains about 299 bytes. 512 is not sufficient, but the next power of two, 1024
is sufficient to contain 299 * 2.

Data

Piksi Velocity readings are in ECEF coordinates and in millimeters persecond

Piksi Position readings are in ECEF coordinates and in meters

Piksi Baseline readings are in ECEF coordinates and in millimeters

1.2.8 PTest Documentation

PTest is an extremely robust testing architecture that tests our flight software in conjunction with our mission simula-
tion in both a Hardware-out-of-the-Loop (HOOTL) and Hardware-in-the-Loop (HITL) configuration. The HITL tests
can be further broken down into

• Teensy-in-the-Loop (TITL) tests, which are like HOOTL tests but with flight software running on an actual
Teensy 3.6, like it would on the satellite, rather than as a binary executable on a computer.

• Vehicle-in-the-Loop (VITL) tests, which run the flight software on the satellite’s entire electronics stack. Op-
tionally, VITL tests can incorporate other satellite elements like the propulsion system, the ADCS box, or the
radio.

Flight software must be proven on HOOTL and TITL levels before running at a VITL level. This testing architec-
ture allows us to have iterated stages of proving the flight readiness of software whilst minimizing risk to expensive
hardware during testing.

See below for design documentation for ptest. To install and run ptest, consult the README in FlightSoftware/
ptest/README.md.

PTest Software Stack

At the core of the simulation architecture is the USBSession. This is an integration class that either connects to a
Teensy running flight software or to a desktop binary executable, and allows exchanging state fields with the flight
software.
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Related to the USBSession is the RadioSession, which creates a connection to the email account that PAN uses to talk
to the Iridium satellite network. Using this email account, the RadioSession is able to interpret downlinks and send
uplinks when requested by the simulation.

At the top level, the SimulationRun architects the Simulation, any USBSession objects, any RadioSession objects,
the StateCmdPrompt, and Datastore and Logger objects required by the state sessions, simulation, and radio session.

The State Command Prompt

This is a user-facing CLI that interacts with state session and simulation objects to produce meaningful test behavior.
The user has access to a wide selection of commands:

• rs and ws are used to read state fields and write state fields to a currently selected state session or radio
session. wms can be used to write multiple state fields at a time.

Typical usage is as follows:

> rs pan.cycle_no
1 (Completed in 604 us)
> ws cycle.start true
Succeeded (Completed in 731 us)
> wms pan.state 11 cycle.start true
Succeeded (Completed in 985 us)
> rs pan.cycle_no
3 (Completed in 651 us)

You can find the actual implementation for these commands in USBSession and RadioSession.

• cycle is shorthand for ws cycle.start (advancing the flight software cycle by 1) and cyclecount is
shorthand for rs pan.cycle_no.
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• plot [field] can be used to plot the values of a state field that have been collected so far.

• listcomp lists the set of available state and radio sessions to connect to.

• switchcomp can be used to switch between state and radio sessions.

• checkcomp lists the currently active state or radio session. Typical state/radio session choices include

– FlightController

– FlightControllerRadio

– FlightControllerLeader

– FlightControllerLeaderRadio

– FlightControllerFollower

– FlightControllerFollowerRadio

• checksim can be used to check how many seconds are left in the current simulation.

• endsim ends the MATLAB simulation (though this behavior has been a little flaky.)

• telem is used to extract the most recent telemetry packet off of the spacecraft.

• parsetelem parses the most recently received packets into a meaningful state.

• os [field] can be used to override the value of a state field on the current state session so that values sent
by the simulation for that state field value are ignored.

• ro [field] releases the override on a field.

Useful Commands:

• ws cycle.auto true : DebugTask in flight software will no longer wait for cycle.start to be true
before finishing, so Flight Software cycles will automatically proceed.

PTest Cases

Take a read at PTest Software Stack before looking at this page. Once you do, you know that USBSession is the core
of how a user interacts with flight software instances. The state command prompt provides a manual way to read and
write state from flight software; ptest cases provide a powerful, Python-based, automated way to transact state fields.
This allows for the creation of automated simulations and testcases on our spacecraft.

See below for an inheritance diagram of the ptest case base classes:

Writing a PTest Case

Is as simple as inheriting from either SingleSatOnlyCase or MissionCase, as diagrammed above. These base
classes contain some utilities for reading and writing state to either 1 or 2 satellites, respectively.

The base ptest class also exposees a set of FSWEnum objects which create dual-indexing of common flight software
enums (like mission state, ADCS state, etc.) by both name and numerical value. See the example below of how you
can set the satellite mission state to “manual”.

Examples of writing a state field through a ptest case derived from SingleSatOnlyCase:

self.ws("pan.state", self.mission_states.get_by_name("manual"))

self.ws("dcdc.ADCSMotor_cmd", True)

self.ws("adcs_cmd.rwa_speed_cmd", [0,0,0])
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Fig. 2: Diagram depicting the relationship between the base classes of ptest cases.

self.ws() accepts the statefield name and a int, float, bool, or a list of them.

Examples of a reading state field through a ptest case derived from SingleSatOnlyCase:

self.rs("adcs_monitor.mag_vec")

self.rs("adcs_cmd.havt_reset0")

self.rs() returns the proper type of variable associated with each state field.
self.rs("adcs_cmd.rwa_speed_cmd") returns a list of floats.

Listing of Ptest Cases

ADCSCheckoutCase

The ADCSCheckoutCase

Initialization

1. Sets the mission state to manual

2. Sets the ADCS state to point_manual

3. Set the RWA mode to RWA_SPEED_CTRL

4. Set the intial RWA speed command to [0,0,0]

5. Turn on the ADCS Motor DCDC.
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HAVT Checkout

The HAVT checkout begins by resetting all devices on the ADCSC.

It then pattern matches the read HAVT table with existing cataloged test-beds. If no match is found, the user is alerted.

Then all devices are disabled and reset, to make sure the devices are all properly cycled, and returned to the initially
read HAVT table.

MAG Checkout

The checkout case pulls ten readings from the mag, cycle() ing the FC between each reading. It checks to make sure
the readings change over time, and that the magnitude of the readings are reasonable (within expected earth magnetic
field strength expectations).

MAG Independence Checkout

If both magnetometers are functional, this test section will disable MAG1, and check that MAG2 still works. The
same checkout is performed on MAG1 with MAG2 disabled. The independence checkouts re-run the same checkouts
as above.

GYR Checkout

The checkout case pulls ten readings from the gyro, cycle() ing the FC between each reading. It checks to make
sure the readings change over time, and that the magnitude of the readings are reasonable.

Wheel Checkout

The wheels are put into RWA_SPEED_CTRL and it checks that the speed read is reasonably close to the speed read
for a series of tests.

The wheels are then put RWA_TORQUE_CTRL and it checks that the torque read is close to the actual torque read for
a series of tests.

SSA Checkout

Each Sun Sensor is polled for its voltage, and the sum_of_differentials method is used to check that the
sensors change over time. Alternatively it is just manually inspected.

TODO FURTHER CHECKOUTS

PiksiCheckoutCase

The PiksiCheckoutCase continuously reads data from the Piksi device.

It first performs a series of 10 readings for the user to glimpse at the data coming in. Then a series of 100 readings are
performed. It checks to make sure that the most common mode of return is a nominal one or a nominal combination.

If not a TestCaseAssertion is thrown, indicating that the Piksi is likely not functioning as intended.
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For each vector that is available, it that the vector changes with time, and that the magnitude of the entire vector is
within expected bounds.

Position should be within 10 km of 6371 km. Velocity is within 4 m/s, and that the baseline vector is within 100 m.

The user must then check that the Piksi is functioning as expected from the diagnostic data given the condition of the
test bed.

Deployment to Initialization Hold Checkout Case

This checkout case confirms that, if the satellite is deployed and all the ADCS devices are functional, then the satellite
will move to detumble. If the satellite is deployed and if one or more of the ADCS devices are not functional, then
the satellite moves to initialization hold.

First, the checkout case moves the satellite to startup and waits the full deployment period. Then, the checkout
case tests each of the following scenarios:

1) All ADCS Devices are functional: The case unsignals all the listed faults and checks that the satellite moves
to detumble.

2) ADCS is not functional: This fault could occur if I2C communication between the flight computer and the
ADCS fails. The checkout case will signal the adcs.functional fault and check that the satellite moves to
initialization_hold.

3) ADCS Wheels 1-3 are not functional: The ADCS wheels allow the satellite to adjust its orientation in
space. The case will trip each of the ADCS wheel faults, one-by-one, and check that the satellite moves to
initialization_hold each time.

4) ADCS Potentiometer is not functional: The ADCS potentiometer is a variable resistor that controls the torques
that the motors operate with. The checkout signals adcs_monitor.wheel_pot_fault and checks that
the satellite moves to initialization_hold.

DCDC Checkout Case

The DCDC checkout case verifies that we are able to control the values of the DCDC pins: ADCSMotorDCDC_EN,
which brings power to the ADCS system, and SpikeDockDCDC_EN which brings power to the propulsion and
docking systems. The checkout case also verifies that we can reset and disable these pins from the ground.

GomspaceCheckoutCase

The GomspaceCheckoutCase tests the readable state fields read from the Gomspace and compares them to the expected
values from its datasheet and manual. The case also tests that writable fields can be properly set and that powercycling
is successful. The test case will log any incorrect or unsuccessful reads/writes.

DockingCheckoutCase

The DockingCheckoutCase is meant that we can write and read to the docking system’s state fields, and in HITL is
also meant to test that the motor turns the expected amount with the currently set values for step angle and delay.

The test case logs the state of all the fields as it runs. It first checks that the configuration is undocked in the undocked
magnet configuration and not turning, and that the configuration is commanded to be in the docked position. The initial
step angle and delay are verified, and then the system is sent the command to undock and then to dock again. Then,
the step angle and step delay are written to different values and the process is repeated. There should be a noticeable
difference in speed, but overall each dock and undock command should take around a minute.
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CHAPTER

TWO

GNC AND SIMULATION SOFTWARE DOCUMENTATION

The repository for GNC and simulation software is here.

2.1 Introduction

There are two main deliverables contained within the PSim repository: the gnc library and the psim Python module.
Here we’ll provide a brief overview of the motivation behind these two products, their respective build systems, and
their general layout within the repository.

2.1.1 GNC Library Overview

The gnc Library is an upstream dependency of PAN’s flight software and provides it with implementations of estima-
tors, controllers, and environmental models – among other things.

With microcontrollers being the eventual target platform, the entire gnc library is written in C/C++, avoids dynamic
memory allocation, and is built using the PlatformIO build system. The general layout of the gnc library within the
repository is outlined below:

• The header files made public by the library are located under the include/gnc and include/orb directories.

• The source files compiled as part of the library and header files that are considered private to the library’s
implementation are located under the src/gnc directory.

• Upstream dependencies are pulled in as git submodules and are located within the lib directory.

• Unit tests for the library are located in test/gnc.

• Build target information is enumerated in platformio.ini and the file specifying the gnc library to PlatformIO is
the library.json file.

For more details on building the gnc library and running tests please see Building and Testing GNC.

2.1.2 PSim Overview

The psim Python module is intended to serve two main purposes:

• Support high-fidelity integrated testing both in HOOTL and HITL configurations. This means psim must be
capable of simulating orbital and attitude dynamics, realistically respond to the actuator commands issued by
flight software, and respond with simulated sensor data that can be fed back into flight software.

• Serve as a simulation environment to verify estimator and controller implementations contained with the gnc
library independant of flight software. The main reason to verify gnc algorithms outside the integrated testing
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environment described above is speed. The above tests only run at real time meaning verifying an orbit estimator,
for example, over the course of many orbits in such an environment would be a very inefficient process.

The first use case is supported by the rudimentary interface provided by the psim.Simulation object. It allows
ptest to step the simulation as required and easily exchange sensor and actuator data as needed. The second use
case is satisfied by the psim command line interface described in Running a Simulation. It allows the user to run a
“standalone” simulation running far faster than realtime, manipulate initial conditions, generate plots, et cetera.

Given psim only needs to be compiled for desktop platforms we have more freedom to use the full set of C/C++ and
STL features. The Bazel build system is also use making handling a large number of dependencies, large number of
build targets, and autogenerated source files far easier to deal with. The general layout of psim within the repository
is given below:

• Additional Skylark to adapt the Bazel build system for use with psim is located within the bazel directory. The
code here supports the autogenerated *.yml.hpp files among other features.

• The public header and YAML model interface files for each psim library are located within the include/psim
directory.

• The source files compiled are part of each respective library and header files considered to be private to each
library’s implementation are located under the src/psim directory.

• Unit tests written using GoogleTest are locating in test/psim.

• The source code that actually makes the psim code accessible via Python is defined in python/psim/_psim.cpp.

• C/C++ build targets and dependency information are defined in the WORKSPACE and BUILD.bazel files.

• Additional Python code making up the psim Python module can be found under the python directory.

For more information on building the psim Python module and running unit tests please see Building and Testing
PSim.

2.2 Installation Guide

This outlines how to setup your development environment for the psim repository. If you’re experiencing build issues,
try searching through Common Problems and seeing if anything seems relevant to you. Feel free to expand on that
section if necessary as well!

2.2.1 Dependencies

All of the following must be installed on your system in order to build the gnc and/or psim libraries:

• Python three (Python 3.6 or higher).

• Python three development headers.

• Python three distutils library.

• Bazel build system.

See this Bazel installation guide for more details on setting up Bazel.

Python development headers can frequently be installed via your systems package manager. On a Debian system, as
an example, use:

sudo apt-get install python3-dev

The Python distutils package always seems to already be installed. If unsure, continue with the installation guide
and revisit the disutils package later if needed.

38 Chapter 2. GNC and Simulation Software Documentation

https://bazel.build/
https://bazel.build/
https://github.com/pathfinder-for-autonomous-navigation/psim/blob/master/bazel
https://github.com/pathfinder-for-autonomous-navigation/psim/tree/master/include/psim
https://github.com/pathfinder-for-autonomous-navigation/psim/tree/master/src/psim
https://github.com/google/googletest
https://github.com/pathfinder-for-autonomous-navigation/psim/tree/master/test/psim
https://github.com/pathfinder-for-autonomous-navigation/psim/blob/master/python/psim/_psim.cpp
https://github.com/pathfinder-for-autonomous-navigation/psim/blob/master/WORKSPACE
https://github.com/pathfinder-for-autonomous-navigation/psim/blob/master/BUILD.bazel
https://github.com/pathfinder-for-autonomous-navigation/psim/blob/master/python
https://docs.bazel.build/versions/master/install.html


PAN Software Systems Manual

2.2.2 Cloning the Repository

Be sure the clone the repository recursively to download all submodules as well:

git clone --recursive git@github.com:pathfinder-for-autonomous-navigation/psim.git
cd psim

When pulling in updates or switching between branches with different submodule commits, you must run:

git submodule update

to actually reflect changes inside the submodules themselves!

2.2.3 Python Virtual Environment

Warning: If you do not use your system’s default version of Python three, psim may fail to build or run.

Both gnc and psim will share a Python virtual environment development. From the root of the repository, run the
following:

python -m venv venv
source venv/bin/activate
pip install --upgrade pip wheel

being sure to use you’re system wide install of Python three.

2.2.4 Building and Testing GNC

The gnc library is build and tested using PlatformIO. From within the Python Virtual Environment, execute the
following commands to install the required dependencies:

pip install -r requirements.txt

and then you are free to build and run the gnc unit tests natively with:

pio test -e native

There are other build targets to run CI, execute code on a Teensy microcontroller, etc. I recommend checking out the
repositories platformio.ini for more information on the various build targets.

Further testing of the gnc library is possible from within psim itself – more on this later.

2.2.5 Building and Testing PSim

The first way to interacting with psim is by building and running it’s suite of C++ unit tests. This is done by executing
the following:

bazel test //test/psim:all

A more limited set of unit tests that are executed for CI can also be run with:
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bazel test //test/psim:ci

The second, and far more useful, way of using psim software is building the psim Python module. Prior to doing so,
however, you must install the lin Python module in your Python Virtual Environment with:

pip install lib/lin

This should be reinstalled everytime the lin submodule receives updates – this isn’t too often nowadays. From there,
the psim module is installed via:

pip install -e .

where the -e flag installs the Python package in “editable mode” and allows Bazel build caching system to greatly
reduce build times – because a new copy of the repository isn’t created for each install.

To verify the psim module is installed and functioning, run:

python -m psim --help

and, if interested, continue on to Running a Simulation to run a full simulation with your new Python module.

2.2.6 Intellisense Support

Bazel doesn’t play nicely with VSCode’s existing C++ intellisense extensions on it’s own. In order to get intellisense
working with the Bazel targets, run the following setup command once:

./tools/bazel-compilation-database.sh

which will install a scripting tool called bazel-compdb to ~/.local/bin on your machine. Please ensure you
have a ~/.local/bin directory on your machine and it’s in your PATH.

Note: It’s possible to install the tool in a different directory if you’d prefer not to use ~/.local/bin. Simply edit
the tools/bazel-compilation-database.sh script accordingly.

Once installed, simply call:

bazel-compdb

periodically from the root of the repository. It will generate a compile-commands.json file that the VSCode
extensions will read and intellisense should start working.

2.2.7 Common Problems

Bazel Requiring Python Two

In the past, we’ve seen Bazel trying to determine the version of a system wide Python two installation. It will error out
and complain that a command similar to:

python --version

failed to run. There are two ways we’re currently aware of to fix this:

40 Chapter 2. GNC and Simulation Software Documentation



PAN Software Systems Manual

• Alias/install the Python three installation as the default Python on your system. Arch linux and other operating
systems do this by default and psim builds without a Python two installation.

• Install Python two on your system even if you aren’t going to use it. Bazel will be smart and figure out python3
still exists on your system and use that Python version instead.

Bazel Failing to Build PSim After Upgrading Python

Installing psim with:

pip install -e .

will fail after performing a major version upgrade of Python three on your system – e.g. upgrading Python 3.8.x to
Python 3.9.x.

In the build process, Bazel hunts down the include path to your current Python three development headers. It then
creates a symbolic link to that directory which is passed as an include path to the compiler at build time. That symbolic
link becomes invalid when upgrading through a major version of Python because the include directory name changes.
As such, Bazel will spit out compiler errors saying things like the header Python.h can’t be found.

To fix this you should run the following in the root of the repository:

bazel clean --expunge

and then, if you haven’t already create a new virtual environment and repeat the install process. Running bazel
clean --expunge forces Bazel to once again hunt down the Python include path fixing the issue.

PSim Standalone has Issues Generating Plots

This has been noticed to happen on MacOS a couple times. Recreating you’re Python Virtual Environment with the
--system-site-packages flag may help:

rm -r venv
python -m venv venv --system-site-packages
source venv/bin/activate
...

The Nuclear Option

If all else fails, it’s worth trying to clone a fresh copy of the repository and attempt setup again from the beginning. It
has been necessary on a couple rare occasions where we’ve never been able to reproduce the error.

2.3 Running a Simulation

This gives an overview of how to run a PSim standalone simulation through via the command line. If you’re
looking for details on the Python classes psim.SimulationRunner or psim.Simulation please check out
python/psim/simulation.py.

Prior to running a simulation you must have installed the psim Python module as described in Building and Testing
PSim.
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2.3.1 Command Line Interface

Note: Only the core options provided by the command line interface are presented here. For a complete list please
run python -m psim --help.

The core usage of the psim is given by:

python -m psim [-p PLOTS] [-ps PLOTS_STEP] [-s STEPS] -c CONFIGS SIM

where:

• -p PLOTS, --plots PLOTS specifies a comma separated list of plotting configuration files used to deter-
mine what data to log and plot over the course of the simulation.

These plotting files can be found within config/plots and it’s nested subdirectories. To refer to a particular
plotting file you specify it’s relative path from config/plots dropping the .yml suffix.

• -ps PLOTS_STEP, --plots-step instructs the simulation how frequently it should poll data from the
simulation for plotting in simulation steps.

For example, setting this to one provides a plot data point at every step while setting it to ten would only log a
data point from plotting every ten steps.

• -s STEPS, --steps STEPS specifies how many steps the simulation should run for (a value of zero allows
the simulation to run forever).

There are currently no other stopping conditions provided by the command line interface.

• -c CONFIGS, --configs CONFIGS specifies a comma separated list of configuration files specifying ini-
tial conditions.

These configuration files can be found within config/parameters and it’s nested subdirectories. To refer to a
particular configuration file you specify it’s relative path from config/parameters dropping the .txt
suffix.

• SIM gives the simulation type to be run.

The string name of the Python simulation type is passed here and is case sensitive. A list of all the available
types can be found in python/psim/sims.py.

2.3.2 Testing the Attitude Estimator

As an example, how to run a test of the attitude estimator is given below:

python -m psim -s 2000 -p fc/attitude,sensors/gyroscope,truth/attitude -ps 1 -c
→˓sensors/base,truth/base,truth/deployment AttitudeEstimatorTestGnc

This runs a simulated test of the attitude estimator starting during deployment. Once the simulation terminates, you
should be left with tons of plots describing the performance of the attitude estimator, the gyroscope, and the truth
attitude dynamics.

Feel free to mess around with different simulation types, various initial conditions, and/or other plotting configurations.
Do note, however, that all combinations don’t always produce a “valid” simulation. For example, you can’t ask for
truth/attitude plots when running a simulation without attitude dynamics - e.g. SingleOrbitGnc.
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2.4 PSim Architecture

2.4.1 Introduction

2.4.2 Configurations

Configuration Files

2.4.3 State Fields

All data sharing between models within a simulation as well as transactions to and from Python happen via state field
reads and writes. Here, the two main types of supported state fields will be described along with their intended use
cases.

Lazy State Field

Lazy state fields, as suggested by their name, are lazily evaluated when accessed given the current state of the simula-
tion - i.e. the value of other state fields. The result of a lazy evaluation is cached for the remainder of the simulation
step to allow for low-overhead duplicate accesses and reset when the simulation is stepped forward again.

The main motivation for supporting lazily evaluated fields is two fold:

• Improved performance. The end user shouldn’t pay for the computation of fields that aren’t strictly required
by their use case. Most lazy fields implement convenience coordinate transformations, calculate sensor error
calculations, estimator performance metrics, et cetera that aren’t required by most use cases.

• Convenience. While not paying to computational overhead that you don’t need is nice, having the ability to at
anytime query the value of some lazily evaluated field for debugging purposes is invaluable. Furthermore, it
reduces potential code duplication for particular use cases if the simulation can already provide a large swath of
information via lazy evaluation.

The implementation of a lazy state fields can be found in include/psim/core/state_field_lazy.hpp. Please refer the
documentation describing models for more information on how lazy state fields are implemented and used with a
simulation.

Valued State Field

A valued state field is, again as the name suggests, backed directly by a value in memory. There is no lazy evaluation
and a valued field can be written too if marked as writable by the owning model.

Generally speaking, a valued state field is used to store fields integral to the current state of the spacecraft. Something
like each satellite’s position and velocity can’t really be lazy evaluated; on each simulation step the dynamics model
must propagate the position and velocity forward in time. Valued fields can also be used if the data is calculated on
each step anyway even if it’s not “integral” to the state of the simulation. An example of this would be the gyroscope
bias estimate determined by the attitude filter.

include/psim/core/state_field_valued.hpp contains the implementation of valued state fields. Again, please refer the
documentation describing models for more information on how valued state fields are implemented and used with a
simulation.

2.4.4 Models
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Model

Model Interfaces

Model List

2.4.5 Simulations

2.4.6 Python
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CHAPTER

THREE

GROUND SOFTWARE DOCUMENTATION

This section of doumentation will contain information about ground software. Ground software has two purposes:

1) Store and index telemetry coming from the satellites

2) Send commands to the satellite via the Iridium Satellite Constellation Network.

3) Send commands to the Flight Computer to test telemetry without hardware in the loop.

The code for the telemetry parsers and MCT is available here.

The code for the downlink processing server and telemetry software is available here.

3.1 Radio Session

The RadioSession class represents a connection session with a Flight Computer’s Quake radio. RadioSession is used
by the simulation software and the user command prompt to read and write to a flight computer’s Quake radio. Upon
startup, a radio session will create HTTP endpoints which can be used to send telemetry to a radio. This section
elaborates on these endpoints, how autonomous uplinks are scheduled, and the two main methods in radio session:
read_state and write_state.

3.1.1 Uplink Timer

The two satellites communicate their respective GPS positions and other state information via the ground station
and Iridium. After recieving state information from one satellite, the ground autonomously sends an uplink with
the relevant information to the other satellite. While communication between the satellites and the ground station is
established, we can expect information packets to be recieved and sent by the ground every few minutes.

After autonomously creating a packet to be sent to a satellite, the radio session queues the packet and starts an Uplink
Timer. The radio session waits until the timer is up before sending the uplink to the other satellite. The amount of
time that the radio session waits before sending the uplink can be configured in the radio session config file. In the
config file, the send_queue_duration specifies the total amount of time that radio session waits before sending
the uplink and the send_lockout_duration specifies the amount of time during which the mission commander
can no longer make edits to the queued uplink. For example, if the send_queue_duration is 10 minutes and
the send_lockout_duration is 2 minutes, then the mission commander can make edits to the queued uplink for
only the first 8 minutes. After 10 minutes, the uplink will be sent to the satellite via Iridium.

The Uplink Timer can be paused and resumed to allow more time for the mission commander to edit a queued
uplink. This can be done by sending a request to a designated HTTP endpoint.
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3.1.2 HTTP Endpoints

Upon creation, the radio session will set up four HTTP endpoints that allow the mission commander to send uplinks
to the satellite. The mission commander can access these endpoints and send telemetry using NASA’s OpenMCT
interface.

1) Time

This endpoint returns the amount of time left on the uplink timer is an autonomous uplink is queued.

2) Pause

This endpoint allows the mission commander to pause the uplink timer so that he or she can make edits to a queued
uplink.

3) Resume

This endpoint allows the mission commander to resume the uplink timer once he or she is done making edits to a
queued uplink.

4) Request Telemetry

This endpoint allows a mission commander to send telemetry to a satellite by posting requested telemetry as a JSON
object over HTTP. If an autonomous uplink is queued to be sent, then the requested telemetry will be added to the
queued uplink packet. We are constrained to send 70 bytes of information per uplink packet. Therefore, editing queued
autonomous uplinks allows us to send as much information per uplink packet as possible.

On the other hand, if there is no autonomous uplink queued, then the uplink packet will immediately be sent to the
satellite (i.e there will be no use of an UplinkTimer or a queue duration).

3.1.3 Read State

read_state() allows us to read the most recent value of a statefield of a satellite. To do this, RadioSession establishes
a connection to the Email Processor responsible for indexing statefield information from both satellite radios. Ra-
dioSession then sends a GET request to the email processor over HTTP with the name of the ElasticSearch index
(statefield_report_[imei of RadioSession’s connected radio]) and the name of the desired statefield as queries.

3.1.4 Write State

write_state() allows us to set the value of a statefield for a specific satellite from the ground. First, RadioSession
confirms whether or not there are any uplinks currently queued to be sent to the connected radio. RadioSession does
this by sending a GET request to the ElasticSearch database over HTTP with the name of the ElasticSearch index
(iridium_report_[imei of RadioSession’s connected radio]) and the name of the send-uplinks flag as queries.

If RadioSession is cleared to send uplinks, then RadioSession 1) waits a designated send queue duration and then 2)
sends an uplink to the satellite via Iridium. The subject of the uplink is the IMEI number of the radio of the satellite
that will set the statefields. The uplink message will also contain an attached SBD file that holds the serialized names
and the desired values of the statefields we wish to set from the ground. While the uplink is queued, the mission
commander can edit the contents of this uplink packet over HTTP.

Once the radio recieves the uplink, the Uplink Consumer in Flight Software will then deserialize and read the SBD
file and set the statefield values accordingly.

3.1.5 Email Access

All uplinks are sent to the satellites via the Iridium Satellite Network. To accomplish this, radio session sends an email
from the designated PAN email account to Iridium’s email address. The subject of the email is the IMEI number of
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the satellite’s radio, and attached to the email is a file holding a serialized uplink packet.

In order to access PAN’s email account from a remote server and send messages, the radio session obtains token
credentials using Google’s Gmail API. We are constrained to a token grant rate limit a 10,000 grants per day, or
approximately 10 token grants a minute. However, since the radio session waits an established send queue duration
before sending an uplink, this limit poses no foreseeable issue.

3.2 State Session

A state session represents a connection session with a Flight Computer’s state system. It is used by the simulation
software and user command prompt to read and write to a flight computer’s state. State sessions can be used for testing
telemetry without hardware in the loop.

Upon startup, a state session will create two HTTP endpoints which can be used to send telemetry to the flight com-
puter. This section elaborates on these endpoints and how to send telemetry packets.

3.2.1 Sending Telemetry

We can request to send telemetry to the flight computer by running uplink [field1] [val1] [field2]
[val2] ... in the user command prompt. The state session will then collect the requested telemetry as a JSON
object and serialize this information using the Uplink Producer.

A state session can then send the serialized uplink packet to the flight computer by sending a JSON command with
the uplink packet to the flight computer’s debug console. The debug console will parse the uplink packet and move
the packet into the Quake Manager’s radio MT buffer. The Quake Manager would then deserialize and read the uplink
packet on the next control cycle.

3.2.2 HTTP Endpoints

Upon creation, the state session will create a single http endpoint that allows the commander to request to send
telemetry to the flight computer.

3.3 Processing and Storing Downlinks

3.3.1 ElasticSearch

ElasticSearch is a database that allows us to organize information into various indexes or subcategories. In Ground
software, every radio has two indexes in which we store telemetry data as JSON objects:

1. Iridium Reports

• Name: Iridium_Report_[IMEI of the radio]

• Iridium reports house the most recent information about telemetry, such as Mobile Originated Message
Numbers (MOMSN), Mobile Terminated Message Numbers (MTMSN), and confirmation MTMSNs. An
MOMSN number is the ID of the most recent downlink recieved. An MTMSN number is the ID of the
most recent uplink sent from the ground. A confirmation MTMSN is what we call the MTMSN of the
last uplink message recieved and processed by the radio. If the most recent confirmation MTMSN and
the most recent MTMSN are not equal, then that means that there is a message queued in Iridium that has
not yet been recieved by the satellite radio, and we prohibit the ground from sending any more uplinks by
setting the send-uplinks flag in the Iridium report to False.
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2. Statefield Reports (Statefield_Reports_[IMEI of the radio]).

• Name: Iridium_Report_[IMEI of the radio]

• Statefield Reports house the most recent information pertaining to the actual satellite(s). This information
is found in the Short Burst Data (SBD) attachment in downlink emails.

Every radio has their own Iridium Report index and Statefield Report index to store telemetry information in Elastic-
Search. This allows us to distinguish the statefield and telemetry information for each satellite.

3.3.2 Email Processor

Telemetry is sent from the satellite to the PAN email account via the Iridium Satellite Constellation Network in com-
pressed serialized packets. These packets contain special information and data about the satellites that we need to
store and index. This is accomplished by a server written with Flask which continuously reads unread emails from
the Iridium Network, parses the data that comes from the satellite in the form of an email attachment, and stores that
parsed information in an Elasticsearch database.

When the email processor is started, it opens a thread check_email_thread, which will continuously do the following:

1. Read the most recent unread email received from the Iridium email account.

• If the most recent unread email is identified as a downlink from a satellite radio, the server parses the
information stored in the email attachment containing statefield data and returns a statefield report. A
statefield report is a JSON object that holds statefield names, the updated values of each statefield, and the
time at which the report was recieved.

• If the most recent unread email is identified as a confirmation that a radio has received an uplink, the server
will record that an uplink confirmation was just received and return None.

• If there are no unread emails from any satellites, the server returns None.

2. Process the information recieved from the most recent unread email from Iridium

• If the server has recieved a statefield report, then the thread indexes the statefield report in ElasticSearch.
The function will also create and index an Iridium report.

• If the server does not recieve a statefield report, but we see that the class variable for the uplink confirmation
is set to true, then the thread creates and indexes only an Iridium report in ElasticSearch.

• If the server has not recieved any sort of communication from the satellite, then we do nothing.

3. The thread delays for 10 seconds to reduce CPU bandwidth

3.3.3 Reading Stored Telemetry

The email processor also has an endpoint from which we can access data from the ElasticSearch database. This
endpoint requires two queries: the IMEI number of the radio you want telemetry information from, and the specific
statefield that you want to know the most recent value of. The Flask server will then search for the statefield report
index based on the given IMEI number, and the search within that index for the value of the most recent statefield that
was requested.

This endpoint is used for reading statefield information from a satellite when opening a RadioSession to a certain
radio. It is also used by RadioSession to confirm whether or not the ground is cleared to send more uplinks (i.e if there
aren’t any messages already queued to be sent to the satellite).
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3.4 Telemetry Management

The data coming from the satellite must be serialized and compressed because we are only able to send 70 bytes of
information at a time over radio. Thus, it is necessary to compress and then parse data from the satellite to ensure we
can recieve as much information as possible whenever we are able to establish communication.

I recommend reading these two sections to better understand how downlink information is compressed and sent over
radio to get a better sense of how downlink data is parsed:

• How satellite information is serialized.

• How serialized satellite information is organized and sent over radio.

3.4.1 Uplink Producer

The uplink producer accepts a JSON file containing the names and desired values of the statefields to be set from the
ground. The producer then serializes all the statefield information to a bitstream and writes the uplink packet to an
SBD file. The uplink producer throws an error if the size of the serialized requested telemetry exceeds the limit of 70
bytes.

3.4.2 Downlink Parser

As the thread in the email processor reads unread emails from the Iridium network, the Downlink Parser parses the
serialized information and data into a readable JSON object (ElasticSearch only accepts JSON objects).

The downlink parser reads files/packets containing the statefield information of a groups of flows with varying prior-
ities and processes them at a bit level. If the first bit of a packet is 1, then that signifies the start of a new downlink
frame. The downlink producer will continue to read serialized data until it recieves another frame that starts with 1.
Once the downlink parser reads the next packet that starts with 1, that means the previous frame is finished and the
downlink parser returns the most recently collected frame as a JSON object.
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CHAPTER

FOUR

FIRST TIME SETUP:

Make sure you have bazel installed Make sure you have your venv installed and ready to going Make sure you have
elasticsearch instaled: This link worked for me on Ubuntu 20.04 (WSL2): https://www.digitalocean.com/community/
tutorials/how-to-install-and-configure-elasticsearch-on-ubuntu-20-04
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CHAPTER

FIVE

EVERY TIME SETUP:

From the FSW repo: Make sure your submodules are up to date:

git submodule update --init --recursive

Make sure that PSim (within FSW):

pio run -e lib/common/psim

Make sure that the builds of fsw that you’re going to be using are built: For example:

pio run -e fsw_native_leader
pio run -e fsw_native_follower
pio run -e fsw_native_leader_autotelem
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CHAPTER

SIX

SPOOLING UP THE STACK:

Start ElasticSearch: If you don’t have systemd:

sudo -i service elasticsearch start

On MacOS:

elasticsearch

If you do have systemd, you can set elasticsearch to startup everytime with: https://www.elastic.co/guide/en/
elasticsearch/reference/current/starting-elasticsearch.html

In a seperate terminal: Start TLM:

python -m tlm

In a seperate terminal: Start an AutonomousMissionController with:

python -m ptest runsim -c ptest/configs/amc.json -t AutonomousMissionController

In a seperate terminal: Start MCT inside FlightSoftware/MCT: Make sure to specify a ptest/config that uses a specific
config:

cd MCT
npm start ptest/configs/hootl_hootl_autotelem.json

6.1 Installation Guide

This outlines how to setup your development environment to run full mission simulations. If you encounter any issues
during installation, please first refer to the Common Problems page. Feel free to add an additional section to the
Common Problems page if you encounter a new issue.

6.1.1 Dependencies

In order to run full mission simulations, the dependencies for flight software, simulation software, and the ground
software stack must be installed. Flight and simulation software dependencies are covered in detail in the PSim
Dependencies guide – flight software’s dependencies are a subset of PSim’s.

In addition to the above dependencies, we also need to install ElasticSearch and the NodeJS package manager NPM
for OpenMCT support. Installation for these packages is system specific but generally can be installed via your OS’
package manager.

55

https://www.elastic.co/guide/en/elasticsearch/reference/current/starting-elasticsearch.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/starting-elasticsearch.html


PAN Software Systems Manual

If you’re running on WSL this may be helpful for ElasticSearch.

6.1.2 Installing Flight Software

Installing the flight software repository is the only code-base required for full mission simulations. Simply clone the
repository recursively

git clone --recursive git@github.com:pathfinder-for-autonomous-navigation/
→˓FlightSoftware.git
cd FlightSoftware

and setup a virtual environment:

python -m venv venv
source venv/bin/activate
pip install --upgrade pip wheel
pip install -r requirements.txt
pip install -e lib/common/psim

being sure to use your system’s default version of Python 3 to create the virtual environment as required by PSim in
Python Virtual Environment. Assuming all has gone well so far, both the psim and ptest Python modules have been
successfully installed. For help with psim specific install instructions, please see PSim’s Common Problems section.

6.1.3 Installing Ground Software

For detailed instructions please reference the MCT README.

6.2 Running a HOOTL HOOTL

This outlines how to start a HOOTL-HOOTL, full-mission testcase with ground software in the loop. Thanks to the
generally abstract interface provided by ptest this looks very similar to Running a HOOTL HITL.

In general, it’s recommended to start all of processes described here in separate terminals for ease of use.

6.2.1 Starting ElasticSearch

First on the list here is to start ElasticSearch on your machine. On Linux systems with systemd this is generally
done with

sudo systemctl start elasticsearch.service

and stopped with

sudo systemctl stop elasticsearch.service

I’d recommend checking out this Arch Wiki page for information on basic systemd usage for more commonly used
commands.

For those running on Mac, ElasticSearch can be started with

elasticsearch

In either case, once ElasticSearch is booted it’s recommended to clear the database with
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curl -XDELETE localhost:9200/*

to prevent old data from interfering with the simulation.

If the above directions don’t help with starting ElasticSearch, it may be worth checking out their guide here as well.

6.2.2 Starting PTest

From the root of the Flight Software repository the desired ptest case can be started with

python -m ptest runsim -c ptest/configs/hootl_hootl_autotelem.json -t
→˓DualSat[(Startup)(Detumble)(Standby)(FarField)(NearField)]Case

where the testcase name boots into the desired mission scenario (either startup, detumble, standby, near field opera-
tions, or far field operations). Note that, generally speaking, the autotelem feature is desired for full mission cases so
OpenMCT actually gets populated with data. This is why we’re running with a *_autotelem.json configuration.

Please remember to configure the IMEI numbers in the hootl_hootl_autotelem.json file. Failing to make
these numbers unique to your own machine could cause email collisions between simulations being run by different
PAN members.

6.2.3 Starting the Autonomous Mission Controller

The autonomous mission controller (AMC) can be starting with

python -m ptest runsim -c ptest/configs/amc.json -t AutonomousMissionController

where it’s absolutely critical to match the IMEI number within the amc.json configuration to those used in the
testcase.

6.2.4 Starting OpenMCT

Assuming OpenMCT was already installed, the server can be started with

cd MCT
npm start ../ptest/configs/hootl_hitl_autotelem.json

6.3 Running a HOOTL HITL

This outlines how to start a HOOTL-HITL, full-mission testcase with ground software in the loop. Thanks to the
generally abstract interface provided by ptest this looks very similar to Running a HOOTL HOOTL.

In general, it’s recommended to start all of processes described here in separate terminals for ease of use.

6.3.1 Starting ElasticSearch

Please follower the instructions include with the HOOTL HOOTL simulation instructions for Starting ElasticSearch.
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6.3.2 Starting TLM

Because in a HOOTL HITL setup we’re going to have one actual Iridium radio, it’s neccesary to start the tlm service.
This can be done with

python -m tlm

6.3.3 Starting PTest

From the root of the Flight Software repository the desired ptest case can be started with

python -m ptest runsim -c ptest/configs/hootl_hitl_autotelem.json -t
→˓DualSat[(Startup)(Detumble)(Standby)(FarField)(NearField)]Case

where the testcase name boots into the desired mission scenario (either startup, detumble, standby, near field opera-
tions, or far field operations). Note that, generally speaking, the autotelem feature is desired for full mission cases so
OpenMCT actually gets populated with data. This is why we’re running with a *_autotelem.json configuration.

Please remember to configure the IMEI number for the HOOTL instance in the hootl_hitl_autotelem.json
file. Failing to make this number unique to your own machine could cause email collisions between simulations being
run by different PAN members.

6.3.4 Starting the Autonomous Mission Controller

The autonomous mission controller (AMC) can be starting with

python -m ptest runsim -c ptest/configs/amc.json -t AutonomousMissionController

where it’s absolutely critical to match the IMEI number within the amc.json configuration to those used in the
testcase. Note that in the case of HOOTL HITL you’ll need to pull the actual IMEI number from the hardware quake
itself!

6.3.5 Starting OpenMCT

Assuming OpenMCT was already installed, the server can be started with

cd MCT
npm start ../ptest/configs/hootl_hitl_autotelem.json

6.4 Common Problems

6.5 Debugging

Intercept a specific value out of elasticsearch:

???

Start ElasticSearch:
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sudo systemctl start elastic ElasticSearch

Look at what is inside elasticsearch: .. code:: bash

curl http://localhost:9200/_aliases?pretty=true

Clear ElasticSearch: .. code:: bash

curl -X DELETE “localhost:9200/_all?pretty”

If you ever see any problem with PSim first try this!!!!

git submodule update --init --recursive
pip install -e lib/common/psim

Anything with the whole MCT/PTest Stack: Are you sure elasticsearch was started? Are you sure tlm was started?
Are you sure PTest is running? Are you sure MCT is running?

6.6 Starting up FAQ

Something broke please help idk fill this in

Start ElasticSearch:

idk lmao

In a seperate terminal: Start TLM:

python -m tlm
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CHAPTER

SEVEN

LESSONS FROM PAN

This section of the documentation contains documentation on both the flight software and the PAN satellite’s subsys-
tem architectures. The two ideas go hand-in-hand, which is why their documentation is woven together. This section
is primarily meant to be design documentation, although there is some user documentation as well.

7.1 Mechanical

Any power supply of a subsystem that we need to verify is “on” should have its own indicator LED light or it should
have contacts on the exterior to check with a multimeter.

Every board that required a firmware upload, or is configurable, MUST have an connection available from the exterior
satellite in an assembled state.

The exterior should have better grips or handles to hold the satellite from if possible.

All buttons that need to be pressed, such as reset buttons should also be moved or easily accessable.

7.2 ECE

Magnets shall not be placed near motors. This prevents PAN’s docking system from working reliably.

Magnetomers shall be placed far from motors because their readings will become noisier.

As much as possible step up voltage systems are to be avoided. Instead, if the battery voltage is 8.4V tops, try to find
motors that operate on less than 8.4V. Sensor boards should have no reason to operate on 24V as well.

Avoid ground loops.

Make sure grounds are shared.

The spacecraft should be able to hook up a power supply in a way that mimicks the solar panels so that software that
permits charging or controls charging can be tested in a flight like manner.

Avoid long bus communication lines. These will act like antenna and put strain on signal quality.

For god sake. PLEASE PLEASE PLEASE. Avoid serial communication that is “dumb”. The Piksi screams its data
over whenever it feels like it. This makes getting any time guarentee about its data incredibly frustrating and unreliabe.
When possbile use I2C, or two way master controlled Serial
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7.3 Flight Software Layout

Flight Software should be “single threaded”. This means that control flow should be a linear decision process, and can
be generally characterized by a single state machine. This prevents the headaches of multiple subsystems each owning
their own thread and making conflicting decisions.

Flight Software should be centered around a control task. Every given period, a control cycle passes, in which every
module of code is executed, and its decisions considersed. Each of these modules are called a control task.

Flight Software should be layered so that control task are bundled, and that decision authority first bubbles up to the
highest level control task called the Mission Manager.

The first layer is Monitors. These call driver functions and populate internal memory with the status of sensors and
actuator boards. Next are Estimators and Filters. Given previous state information, these perform math computations
to gain more information about the spacecaft state over time.

Then are FaultHandlers. These make deducations and conclusions about the spacecraft’s health and best course of
action given the current and past sensor data.

Then is MissionManager. Using all information available, and the spacecraft’s current state, it decides what the next
best global policy of the spacecraft should be.

Then are the Subsystem Controllers. Given all data, and the mission state, it decides the best policy for each subsystem.
This includes any mathematical calcuations of actuator impulses, torques, etc.

Then are the Commanders. These perform last minute calculations of all the specific settings for a subsystem. This
would include pin numbers, addresses to load into registers, thresholds to apply.

Then lastly are the Actuator Control Tasks, which take all those settings and actually dumpt them into subsystems
through driver calls.

7.4 Flight Software Implementation

Flight Software should abstract itself into all the layers outlined above so that simulation of its performance can
essentially be done by chopping off the Monitors and Actuators, and everything else can be fully verified assuming
that the Monitors and Actuators are sufficiently mocked.

As a further upgrade, if these ControlTasks could be simulatenously integrated within PSim, then GNC testing and
development need not be translated if PSim and FSW used the same control task architecture.

To minimize the manual linking pain that currently exists within FSW, where programmers have to find field names
and match then manually and create 6 different pointers across unit tests and FSW, and auto coder should be used to
prevent headaches and prevent errors

For god sake. PLEASE PLEASE PLEASE. The telemetry system of the spacecraft should be completely orthogonal
to each ControlTask. Currently internal statefields cannot be looked and or mutated in PTest because they do not have
a serializer for the telemtry system. This has caused significant pain.

The tight knit integration between serializers and statefields has made their seperation near impossible, and is incredi-
bly difficult to free. Instead, serailiers should have been specificed in some orthogonal lookup table between statefields
and serializers. This way, if a certain test suite does not involve actual flight telemetry, its work is not impeded.

7.5 Flight Software Testing

Testing infrastructure should invest in the capability to “walk” the spacecraft’s statemachine all the way to intended
testing locations. While this is tough to support, it is aboslutely critical to ensure that the testing conditions that are
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assumed are actually reachable by the Flight Software binary.
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